Difference between revisions of "009B Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Divide the interval <math style="vertical-align: -5px">[0,\pi]</math> into four subintervals of equal length &nbsp; <math>\frac{\pi}{4}</math> &nbsp; and compute the right-endpoint Riemann sum of <math style="vertical-align: -5px">y=\sin (x).</math>
+
<span class="exam">Divide the interval &nbsp;<math style="vertical-align: -5px">[0,\pi]</math>&nbsp; into four subintervals of equal length &nbsp; <math>\frac{\pi}{4}</math> &nbsp; and compute the right-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">y=\sin (x).</math>
  
  
Line 19: Line 19:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: -5px">f(x)=\sin(x).</math>  
+
|Let &nbsp;<math style="vertical-align: -5px">f(x)=\sin(x).</math>  
 
|-
 
|-
|Each interval has length <math>\frac{\pi}{4}.</math>  
+
|Each interval has length &nbsp;<math>\frac{\pi}{4}.</math>  
 
|-
 
|-
|Therefore, the right-endpoint Riemann sum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,\pi]</math> is
+
|Therefore, the right-endpoint Riemann sum of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on the interval &nbsp;<math style="vertical-align: -5px">[0,\pi]</math>&nbsp; is
 
|-
 
|-
 
|
 
|

Revision as of 18:33, 26 February 2017

Divide the interval    into four subintervals of equal length     and compute the right-endpoint Riemann sum of  


Foundations:  

1. The height of each rectangle in the right-hand Riemann sum

        is given by choosing the right endpoint of the interval.

2. See the Riemann sums (insert link) for more information.


Solution:

Step 1:  
Let  
Each interval has length  
Therefore, the right-endpoint Riemann sum of    on the interval    is

       

Step 2:  
Thus, the right-endpoint Riemann sum is

       


Final Answer:  
      

Return to Sample Exam