Difference between revisions of "009B Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' Recall the trig identity
+
|'''1.''' Recall the trig identity &nbsp;<math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
+
|'''2.''' Also, &nbsp;<math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>
 
|-
 
|-
|'''2.''' Also,
+
|'''3.''' How would you integrate &nbsp;<math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math>
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>
 
|-
 
|'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math>
 
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -2px">u=\tan x.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -2px">u=\tan x.</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Thus, &nbsp;<math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math>
 
|}
 
|}
  
Line 38: Line 34:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math>  
 
|-
 
|-
|Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math>  
+
|Using the trig identity &nbsp;<math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math>  
 
|-
 
|-
 
|we have  
 
|we have  
Line 44: Line 40:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math>
 
|-
 
|-
|Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get
+
|Plugging in the last identity into one of the &nbsp;<math style="vertical-align: -5px">\tan^2(x),</math>&nbsp; we get
 
|-
 
|-
 
|  
 
|  
Line 65: Line 61:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math>
 
|-
 
|-
|For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution.  
+
|For the first integral, we need to use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -5px">u=\tan(x).</math>  
+
|Let &nbsp;<math style="vertical-align: -5px">u=\tan(x).</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
+
|Then, &nbsp;<math style="vertical-align: -5px">du=\sec^2(x)dx.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have

Revision as of 18:30, 26 February 2017

Evaluate the integral:


Foundations:  
1. Recall the trig identity  
2. Also,  
3. How would you integrate  

        You could use  -substitution.

        Let  
        Then,  

        Thus,  


Solution:

Step 1:  
First, we write
       
Using the trig identity  
we have
       
Plugging in the last identity into one of the    we get

       

by using the identity again on the last equality.
Step 2:  
So, we have
       
For the first integral, we need to use  -substitution.
Let  
Then,  
So, we have
       
Step 3:  
We integrate to get

       


Final Answer:  
       

Return to Sample Exam