Difference between revisions of "009B Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|How would you integrate <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx?</math>
+
|How would you integrate &nbsp;<math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -2px">u=x^2+x.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -2px">u=x^2+x.</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -4px">du=(2x+1)~dx.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math style="vertical-align: -4px">du=(2x+1)~dx.</math>
 
|-
 
|-
 
|
 
|
Line 71: Line 71:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We use <math style="vertical-align: 0px">u</math>-substitution.  
+
|We use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math>  
+
|Let &nbsp;<math style="vertical-align: -2px">u=x^4+2x^2+4.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math>  
+
|Then, &nbsp;<math style="vertical-align: -5px">du=(4x^3+4x)dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math>  
 
|-
 
|-
 
|Also, we need to change the bounds of integration.  
 
|Also, we need to change the bounds of integration.  
 
|-
 
|-
|Plugging in our values into the equation <math style="vertical-align: -4px">u=x^4+2x^2+4,</math>  
+
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -4px">u=x^4+2x^2+4,</math>  
 
|-
 
|-
|we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -5px">u_2=2^4+2(2)^2+4=28.</math>
+
|we get &nbsp;<math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=2^4+2(2)^2+4=28.</math>
 
|-
 
|-
 
|Therefore, the integral becomes
 
|Therefore, the integral becomes

Revision as of 18:23, 26 February 2017

Evaluate

(a)  

(b)  


Foundations:  
How would you integrate  

        You could use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

(a)

Step 1:  
We multiply the product inside the integral to get

       

Step 2:  
We integrate to get
      
We now evaluate to get

       

(b)

Step 1:  
We use  -substitution.
Let  
Then,    and  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get    and  
Therefore, the integral becomes
       
Step 2:  
We now have

       

Therefore,
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam