Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>
 
|-
 
|-
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math>
+
|'''2.''' How would you integrate &nbsp;<math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -2px">u=\sin x.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -2px">u=\sin x.</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -1px">du=\cos x~dx.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math style="vertical-align: -1px">du=\cos x~dx.</math>  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Thus,  
 
|&nbsp; &nbsp; &nbsp; &nbsp; Thus,  
Line 41: Line 41:
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math>
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math>
 
|-
 
|-
|Using the identity <math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math>  
+
|Using the identity &nbsp;<math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math>  
 
|-
 
|-
|we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math>
+
|we get &nbsp;<math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math>
 
|-
 
|-
 
|If we use this identity, we have
 
|If we use this identity, we have
Line 58: Line 58:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we use <math style="vertical-align: 0px">u</math>-substitution.  
+
|Now, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -5px">u=\cos(x).</math>  
+
|Let &nbsp;<math style="vertical-align: -5px">u=\cos(x).</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math>  
+
|Then, &nbsp;<math style="vertical-align: -5px">du=-\sin(x)dx.</math>  
 
|-
 
|-
 
|Therefore,  
 
|Therefore,  

Revision as of 16:59, 26 February 2017

Evaluate the integral:


Foundations:  
1. Recall the trig identity
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x+\cos^2x=1}
2. How would you integrate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \sin^2x\cos x~dx?}

        You could use  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution.

        Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sin x.}
        Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\cos x~dx.}
        Thus,

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \sin^2x\cos x~dx} & = & \displaystyle{\int u^2~du}\\ &&\\ & = & \displaystyle{\frac{u^3}{3}+C}\\ &&\\ & = & \displaystyle{\frac{\sin^3x}{3}+C.} \end{array}}


Solution:

Step 1:  
First, we write
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.}
Using the identity  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x+\cos^2x=1,}
we get  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x=1-\cos^2x.}
If we use this identity, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int (\sin x) (1-\cos^2x)\cos^2x~dx}\\ &&\\ & = & \displaystyle{\int (\cos^2x-\cos^4x)\sin(x)~dx.} \end{array}}

Step 2:  
Now, we use  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos(x).}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-\sin(x)dx.}
Therefore,

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int -(u^2-u^4)~du}\\ &&\\ & = & \displaystyle{\frac{-u^3}{3}+\frac{u^5}{5}+C}\\ &&\\ & = & \displaystyle{\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.} \end{array}}


Final Answer:  
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C}

Return to Sample Exam