Difference between revisions of "009B Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -12px">\int u~dv=uv-\int v~du.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -12px">\int u~dv=uv-\int v~du.</math>
 
|-
 
|-
|'''2.''' How would you integrate <math style="vertical-align: -12px">\int x\ln x~dx?</math>
+
|'''2.''' How would you integrate &nbsp;<math style="vertical-align: -12px">\int x\ln x~dx?</math>
 
|-
 
|-
 
|
 
|
Line 19: Line 19:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and &nbsp;<math style="vertical-align: -12px">v=\frac{x^2}{2}.</math>
 
|-
 
|-
 
|
 
|
Line 40: Line 40:
 
|We proceed using integration by parts.  
 
|We proceed using integration by parts.  
 
|-
 
|-
|Let <math style="vertical-align: 0px">u=x^2</math> and <math style="vertical-align: 0px">dv=e^xdx.</math>  
+
|Let &nbsp;<math style="vertical-align: 0px">u=x^2</math> and &nbsp;<math style="vertical-align: 0px">dv=e^xdx.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: 0px">du=2xdx</math> and <math style="vertical-align: 0px">v=e^x.</math>
+
|Then, &nbsp;<math style="vertical-align: 0px">du=2xdx</math> and &nbsp;<math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have
Line 54: Line 54:
 
|Now, we need to use integration by parts again.  
 
|Now, we need to use integration by parts again.  
 
|-
 
|-
|Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math>  
+
|Let &nbsp;<math style="vertical-align: 0px">u=2x</math> and &nbsp;<math style="vertical-align: 0px">dv=e^xdx.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x.</math>
+
|Then, &nbsp;<math style="vertical-align: 0px">du=2dx</math> and &nbsp;<math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
 
|Building on the previous step, we have
 
|Building on the previous step, we have
Line 73: Line 73:
 
|We proceed using integration by parts.  
 
|We proceed using integration by parts.  
 
|-
 
|-
|Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x^3dx.</math>  
+
|Let &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=x^3dx.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -14px">v=\frac{x^4}{4}.</math>
+
|Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">v=\frac{x^4}{4}.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have

Revision as of 16:56, 26 February 2017

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Foundations:  
1. Integration by parts tells us that
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int u~dv=uv-\int v~du.}
2. How would you integrate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x\ln x~dx?}

        You could use integration by parts.

        Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\ln x} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=x~dx.}

        Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\frac{1}{x}dx} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{x^2}{2}.}

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int x\ln x~dx} & = & \displaystyle{\frac{x^2\ln x}{2}-\int \frac{x}{2}~dx}\\ &&\\ & = & \displaystyle{\frac{x^2\ln x}{2}-\frac{x^2}{4}+C.} \end{array}}


Solution:

(a)

Step 1:  
We proceed using integration by parts.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=x^2} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^xdx.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2xdx} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=e^x.}
Therefore, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^2 e^x~dx=x^2e^x-\int 2xe^x~dx.}
Step 2:  
Now, we need to use integration by parts again.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=2x} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^xdx.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=2dx} and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=e^x.}
Building on the previous step, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int x^2 e^x~dx} & = & \displaystyle{x^2e^x-\bigg(2xe^x-\int 2e^x~dx\bigg)}\\ &&\\ & = & \displaystyle{x^2e^x-2xe^x+2e^x+C.} \end{array}}

(b)

Step 1:  
We proceed using integration by parts.
Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\ln x}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=x^3dx.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\frac{1}{x}dx}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{x^4}{4}.}
Therefore, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_{1}^{e} x^3\ln x~dx} & = & \displaystyle{\left.\ln x \bigg(\frac{x^4}{4}\bigg)\right|_{1}^{e}-\int_1^e \frac{x^3}{4}~dx}\\ &&\\ & = & \displaystyle{\left.\ln x \bigg(\frac{x^4}{4}\bigg)-\frac{x^4}{16}\right|_{1}^{e}.} \end{array}}

Step 2:  
Now, we evaluate to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_{1}^{e} x^3\ln x~dx} & = & \displaystyle{\bigg((\ln e) \frac{e^4}{4}-\frac{e^4}{16}\bigg)-\bigg((\ln 1) \frac{1^4}{4}-\frac{1^4}{16}\bigg)}\\ &&\\ & = & \displaystyle{\frac{e^4}{4}-\frac{e^4}{16}+\frac{1}{16}}\\ &&\\ & = & \displaystyle{\frac{3e^4+1}{16}.} \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2e^x-2xe^x+2e^x+C}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3e^4+1}{16}}

Return to Sample Exam