Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
| How would you integrate <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx?</math>
+
| How would you integrate &nbsp; <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -5px">u=\ln(x).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -5px">u=\ln(x).</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}dx.</math>
 
|-
 
|-
 
|
 
|
Line 38: Line 38:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3.</math>  
+
|We need to use &nbsp;<math style="vertical-align: 0px">u</math>-substitution. Let &nbsp;<math style="vertical-align: -2px">u=1+x^3.</math>  
 
|-
 
|-
|Then, <math style="vertical-align: 0px">du=3x^2dx</math> and&thinsp; <math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math>
+
|Then, &nbsp;<math style="vertical-align: 0px">du=3x^2dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math>
 
|-
 
|-
 
|Therefore, the integral becomes  
 
|Therefore, the integral becomes  
Line 65: Line 65:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We need to use <math>u</math>-substitution.  
+
|We need to use &nbsp;<math>u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -5px">u=\sin(x).</math>  
+
|Let &nbsp;<math style="vertical-align: -5px">u=\sin(x).</math>  
 
|-
 
|-
|Then, <math style="vertical-align: -5px">du=\cos(x)dx.</math>  
+
|Then, &nbsp;<math style="vertical-align: -5px">du=\cos(x)dx.</math>  
 
|-
 
|-
 
|Also, we need to change the bounds of integration.
 
|Also, we need to change the bounds of integration.
 
|-
 
|-
|Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x),</math>  
+
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -5px">u=\sin(x),</math>  
 
|-
 
|-
|we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math>
+
|we get &nbsp;<math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math>&nbsp; and &nbsp;<math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math>&nbsp;
 
|-
 
|-
 
|Therefore, the integral becomes  
 
|Therefore, the integral becomes  

Revision as of 17:53, 26 February 2017

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Foundations:  
How would you integrate  

        You could use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

(a)

Step 1:  
We need to use  -substitution. Let  
Then,    and  
Therefore, the integral becomes
       
Step 2:  
We now have
       

(b)

Step 1:  
We need to use  -substitution.
Let  
Then,  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get    and   
Therefore, the integral becomes
       
Step 2:  
We now have:

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam