Difference between revisions of "009B Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 9: | Line 9: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | How would you integrate <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx?</math> | + | | How would you integrate <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx?</math> |
|- | |- | ||
| | | | ||
| − | You could use <math style="vertical-align: 0px">u</math>-substitution. | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| − | | Let <math style="vertical-align: -5px">u=\ln(x).</math> | + | | Let <math style="vertical-align: -5px">u=\ln(x).</math> |
|- | |- | ||
| − | | Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math> | + | | Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math> |
|- | |- | ||
| | | | ||
| Line 38: | Line 38: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3.</math> | + | |We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: 0px">du=3x^2dx</math> and& | + | |Then, <math style="vertical-align: 0px">du=3x^2dx</math> and <math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math> |
|- | |- | ||
|Therefore, the integral becomes | |Therefore, the integral becomes | ||
| Line 65: | Line 65: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |We need to use <math>u</math>-substitution. | + | |We need to use <math>u</math>-substitution. |
|- | |- | ||
| − | |Let <math style="vertical-align: -5px">u=\sin(x).</math> | + | |Let <math style="vertical-align: -5px">u=\sin(x).</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: -5px">du=\cos(x)dx.</math> | + | |Then, <math style="vertical-align: -5px">du=\cos(x)dx.</math> |
|- | |- | ||
|Also, we need to change the bounds of integration. | |Also, we need to change the bounds of integration. | ||
|- | |- | ||
| − | |Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x),</math> | + | |Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x),</math> |
|- | |- | ||
| − | |we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math> | + | |we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math> |
|- | |- | ||
|Therefore, the integral becomes | |Therefore, the integral becomes | ||
Revision as of 17:53, 26 February 2017
Evaluate the indefinite and definite integrals.
(a)
(b)
| Foundations: |
|---|
| How would you integrate |
|
You could use -substitution. |
| Let |
| Then, |
|
Thus, |
|
|
Solution:
(a)
| Step 1: |
|---|
| We need to use -substitution. Let |
| Then, and |
| Therefore, the integral becomes |
| Step 2: |
|---|
| We now have |
(b)
| Step 1: |
|---|
| We need to use -substitution. |
| Let |
| Then, |
| Also, we need to change the bounds of integration. |
| Plugging in our values into the equation |
| we get and |
| Therefore, the integral becomes |
| Step 2: |
|---|
| We now have: |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |