Difference between revisions of "009A Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">The position function <math style="vertical-align: -5px">s(t)=-4.9t^2+200</math> gives the height (in meters) of an object that has fallen from a height of 200 meters.  
+
<span class="exam">The position function &nbsp;<math style="vertical-align: -5px">s(t)=-4.9t^2+200</math>&nbsp; gives the height (in meters) of an object that has fallen from a height of 200 meters.  
  
<span class="exam">The velocity at time <math style="vertical-align: -1px">t=a</math> seconds is given by:
+
<span class="exam">The velocity at time &nbsp;<math style="vertical-align: -1px">t=a</math>&nbsp; seconds is given by:
 
::<math>\lim_{t\rightarrow a} \frac{s(t)-s(a)}{t-a}</math>
 
::<math>\lim_{t\rightarrow a} \frac{s(t)-s(a)}{t-a}</math>
  
  
<span class="exam">(a) Find the velocity of the object when <math style="vertical-align: -1px">t=3</math>
+
<span class="exam">(a) Find the velocity of the object when &nbsp;<math style="vertical-align: -1px">t=3.</math>
  
 
<span class="exam">(b) At what velocity will the object impact the ground?
 
<span class="exam">(b) At what velocity will the object impact the ground?
Line 11: Line 11:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|'''1.''' What is the relationship between velocity <math style="vertical-align: -5px">v(t)</math> and position <math style="vertical-align: -5px">s(t)?</math>
+
|'''1.''' What is the relationship between velocity &nbsp;<math style="vertical-align: -5px">v(t)</math>&nbsp; and position &nbsp;<math style="vertical-align: -5px">s(t)?</math>
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>v(t)=s'(t)</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>v(t)=s'(t)</math>
Line 27: Line 27:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: -5px">v(t)</math> be the velocity of the object at time <math style="vertical-align: -1px">t.</math>
+
|Let &nbsp;<math style="vertical-align: -5px">v(t)</math>&nbsp; be the velocity of the object at time &nbsp;<math style="vertical-align: -1px">t.</math>
 
|-
 
|-
 
|Then, we have
 
|Then, we have
Line 65: Line 65:
 
|First, we need to find the time when the object hits the ground.  
 
|First, we need to find the time when the object hits the ground.  
 
|-
 
|-
|This corresponds to <math style="vertical-align: -5px">s(t)=0.</math>
+
|This corresponds to &nbsp;<math style="vertical-align: -5px">s(t)=0.</math>
 
|-
 
|-
 
|This give us the equation
 
|This give us the equation
Line 71: Line 71:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-4.9t^2+200=0.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-4.9t^2+200=0.</math>
 
|-
 
|-
|When we solve for <math style="vertical-align: -5px">t,</math> we get
+
|When we solve for &nbsp;<math style="vertical-align: -5px">t,</math>&nbsp; we get
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>t^2=\frac{200}{4.9}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>t^2=\frac{200}{4.9}.</math>
 
|-
 
|-
|Hence, <math style="vertical-align: -18px">t=\pm \sqrt{\frac{200}{4.9}}.</math>
+
|Hence, &nbsp; <math style="vertical-align: -18px">t=\pm \sqrt{\frac{200}{4.9}}.</math>
 
|-
 
|-
|Since <math style="vertical-align: 0px">t</math> represents time, it does not make sense for <math style="vertical-align: 0px">t</math> to be negative.
+
|Since &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; represents time, it does not make sense for &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; to be negative.
 
|-
 
|-
|Therefore, the object hits the ground at <math style="vertical-align: -18px">t=\sqrt{\frac{200}{4.9}}.</math>
+
|Therefore, the object hits the ground at &nbsp;<math style="vertical-align: -18px">t=\sqrt{\frac{200}{4.9}}.</math>
 
|}
 
|}
  
Line 87: Line 87:
 
|Now, we need the equation for the velocity of the object.   
 
|Now, we need the equation for the velocity of the object.   
 
|-
 
|-
|We have <math style="vertical-align: -5px">v(t)=s'(t)</math> where <math style="vertical-align: -5px">v(t)</math> is the velocity function of the object.
+
|We have &nbsp;<math style="vertical-align: -5px">v(t)=s'(t)</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">v(t)</math>&nbsp; is the velocity function of the object.
 
|-
 
|-
 
|Hence,  
 
|Hence,  

Revision as of 17:49, 26 February 2017

The position function    gives the height (in meters) of an object that has fallen from a height of 200 meters.

The velocity at time    seconds is given by:


(a) Find the velocity of the object when  

(b) At what velocity will the object impact the ground?

Foundations:  
1. What is the relationship between velocity    and position  
       
2. What is the position of the object when it hits the ground?
       


Solution:

(a)

Step 1:  
Let    be the velocity of the object at time  
Then, we have
       
Step 2:  
Now, we factor the numerator to get

       

(b)

Step 1:  
First, we need to find the time when the object hits the ground.
This corresponds to  
This give us the equation
       
When we solve for    we get
       
Hence,  
Since    represents time, it does not make sense for    to be negative.
Therefore, the object hits the ground at  
Step 2:  
Now, we need the equation for the velocity of the object.
We have    where    is the velocity function of the object.
Hence,

       

Therefore, the velocity of the object when it hits the ground is
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam