Difference between revisions of "009A Sample Midterm 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 11: | Line 11: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |'''1.''' If <math style="vertical-align: -13px">\lim_{x\rightarrow a} g(x)\neq 0,</math> we have | + | |'''1.''' If <math style="vertical-align: -13px">\lim_{x\rightarrow a} g(x)\neq 0,</math> we have |
|- | |- | ||
| <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math> | | <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math> | ||
|- | |- | ||
| − | |'''2.''' <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math> | + | |'''2.''' <math style="vertical-align: -15px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math> |
|} | |} | ||
| Line 43: | Line 43: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Since <math style="vertical-align: -13px">\lim_{x\rightarrow 3} 2x=6\ne 0,</math> we have | + | |Since <math style="vertical-align: -13px">\lim_{x\rightarrow 3} 2x=6\ne 0,</math> we have |
|- | |- | ||
| | | | ||
| Line 54: | Line 54: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
| − | |Multiplying both sides by <math style="vertical-align: -5px">6,</math> we get | + | |Multiplying both sides by <math style="vertical-align: -5px">6,</math> we get |
|- | |- | ||
| <math>\lim_{x\rightarrow 3} f(x)=6.</math> | | <math>\lim_{x\rightarrow 3} f(x)=6.</math> | ||
Revision as of 16:41, 26 February 2017
Find the following limits:
(a) If find
(b) Find
(c) Evaluate
| Foundations: |
|---|
| 1. If we have |
| 2. |
Solution:
(a)
| Step 1: |
|---|
| First, we have |
| Therefore, |
| Step 2: |
|---|
| Since we have |
|
|
| Multiplying both sides by we get |
(b)
| Step 1: |
|---|
| First, we write |
| Step 2: |
|---|
| Now, we have |
|
|
(c)
| Step 1: |
|---|
| First, we have |
| Step 2: |
|---|
| Now, we use the properties of limits to get |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |