Difference between revisions of "009C Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
<span class="exam">(a) Sketch the curve.
 
<span class="exam">(a) Sketch the curve.
  
<span class="exam">(b) Compute the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math>.
+
<span class="exam">(b) Compute the equation of the tangent line at &nbsp; <math>t_0=\frac{\pi}{4}</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 19: Line 19:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;The slope is <math style="vertical-align: -21px">m=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;The slope is &nbsp;<math style="vertical-align: -21px">m=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}.</math>
 
|}
 
|}
  
Line 38: Line 38:
 
|First, we need to find the slope of the tangent line.  
 
|First, we need to find the slope of the tangent line.  
 
|-
 
|-
|Since <math style="vertical-align: -14px">\frac{dy}{dt}=-4\sin t</math> and <math style="vertical-align: -14px">\frac{dx}{dt}=3\cos t,</math> we have
+
|Since &nbsp; <math style="vertical-align: -14px">\frac{dy}{dt}=-4\sin t</math> &nbsp; and &nbsp; <math style="vertical-align: -14px">\frac{dx}{dt}=3\cos t,</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}.</math>
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}.</math>
 
|-
 
|-
|So, at <math>t_0=\frac{\pi}{4},</math> the slope of the tangent line is  
+
|So, at &nbsp;<math>t_0=\frac{\pi}{4},</math>&nbsp; the slope of the tangent line is  
 
|-
 
|-
 
|
 
|
Line 54: Line 54:
 
|Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
 
|Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
 
|-
 
|-
|If we plug in <math>t_0=\frac{\pi}{4}</math> into the equations for <math style="vertical-align: -5px">x(t)</math> and <math style="vertical-align: -5px">y(t),</math> we get
+
|If we plug in &nbsp; <math>t_0=\frac{\pi}{4}</math>&nbsp; into the equations for &nbsp;<math style="vertical-align: -5px">x(t)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">y(t),</math>&nbsp; we get
 
|-
 
|-
 
|
 
|
Line 62: Line 62:
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}.</math>
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}.</math>
 
|-
 
|-
|Thus, the point <math>\bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)</math> is on the tangent line.
+
|Thus, the point &nbsp;<math>\bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)</math>&nbsp; is on the tangent line.
 
|}
 
|}
  
Line 68: Line 68:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Using the point found in Step 2, the equation of the tangent line at <math>t_0=\frac{\pi}{4}</math> is  
+
|Using the point found in Step 2, the equation of the tangent line at &nbsp; <math>t_0=\frac{\pi}{4}</math>&nbsp; is  
 
|-
 
|-
 
|
 
|
Line 78: Line 78:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See Step 1 above for the graph.  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See above.  
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -14px">y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>  
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -14px">y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}</math>  
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:31, 26 February 2017

A curve is given in polar parametrically by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(t)=4\cos t}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq t \leq 2\pi}

(a) Sketch the curve.

(b) Compute the equation of the tangent line at   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_0=\frac{\pi}{4}} .

Foundations:  
1. What two pieces of information do you need to write the equation of a line?

       You need the slope of the line and a point on the line.

2. What is the slope of the tangent line of a parametric curve?

       The slope is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}.}


Solution:

(a)  
Insert sketch of curve

(b)

Step 1:  
First, we need to find the slope of the tangent line.
Since   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dt}=-4\sin t}   and   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dx}{dt}=3\cos t,}   we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4\sin t}{3\cos t}.}

So, at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_0=\frac{\pi}{4},}   the slope of the tangent line is

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=\frac{-4\sin\bigg(\frac{\pi}{4}\bigg)}{3\cos\bigg(\frac{\pi}{4}\bigg)}=\frac{-4}{3}.}

Step 2:  
Since we have the slope of the tangent line, we just need a find a point on the line in order to write the equation.
If we plug in   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_0=\frac{\pi}{4}}   into the equations for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(t),}   we get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\bigg(\frac{\pi}{4}\bigg)=3\sin\bigg(\frac{\pi}{4}\bigg)=\frac{3\sqrt{2}}{2}} and

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\bigg(\frac{\pi}{4}\bigg)=4\cos\bigg(\frac{\pi}{4}\bigg)=2\sqrt{2}.}

Thus, the point  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigg(\frac{3\sqrt{2}}{2},2\sqrt{2}\bigg)}   is on the tangent line.
Step 3:  
Using the point found in Step 2, the equation of the tangent line at   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_0=\frac{\pi}{4}}   is

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}.}


Final Answer:  
   (a)     See above.
   (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\frac{-4}{3}\bigg(x-\frac{3\sqrt{2}}{2}\bigg)+2\sqrt{2}}

Return to Sample Exam