Difference between revisions of "009C Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we need to calculate <math style="vertical-align: -14px">\frac{dr}{d\theta}</math>.  
+
|First, we need to calculate &nbsp;<math style="vertical-align: -14px">\frac{dr}{d\theta}</math>.  
 
|-
 
|-
|Since <math style="vertical-align: -14px">r=\theta,~\frac{dr}{d\theta}=1.</math>
+
|Since &nbsp;<math style="vertical-align: -14px">r=\theta,~\frac{dr}{d\theta}=1.</math>
 
|-
 
|-
 
|Using the formula in Foundations, we have  
 
|Using the formula in Foundations, we have  
Line 40: Line 40:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we proceed using trig substitution. Let <math style="vertical-align: -2px">\theta=\tan x.</math> Then, <math style="vertical-align: -1px">d\theta=\sec^2xdx.</math>
+
|Now, we proceed using trig substitution. Let &nbsp;<math style="vertical-align: -2px">\theta=\tan x.</math> &nbsp; Then, &nbsp;<math style="vertical-align: -1px">d\theta=\sec^2xdx.</math>
 
|-
 
|-
 
|So, the integral becomes  
 
|So, the integral becomes  
Line 57: Line 57:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Since <math style="vertical-align: -1px">\theta=\tan x,</math> we have <math style="vertical-align: -1px">x=\tan^{-1}\theta .</math>
+
|Since &nbsp; <math style="vertical-align: -4px">\theta=\tan x,</math>&nbsp; we have &nbsp;<math style="vertical-align: -1px">x=\tan^{-1}\theta .</math>
 
|-
 
|-
 
|So, we have
 
|So, we have

Revision as of 16:28, 26 February 2017

A curve is given in polar coordinates by

Find the length of the curve.

Foundations:  
1. The formula for the arc length    of a polar curve    with    is

       

2. How would you integrate

       You could use trig substitution and let  

3. Recall that


Solution:

Step 1:  
First, we need to calculate  .
Since  
Using the formula in Foundations, we have

       

Step 2:  
Now, we proceed using trig substitution. Let     Then,  
So, the integral becomes

       

Step 3:  
Since     we have  
So, we have

       


Final Answer:  
       

Return to Sample Exam