Difference between revisions of "009C Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' The formula for the arc length <math style="vertical-align: 0px">L</math> of a polar curve <math style="vertical-align: -5px">r=f(\theta)</math> with <math style="vertical-align: -4px">\alpha_1\leq \theta \leq \alpha_2</math> is  
+
|'''1.''' The formula for the arc length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a polar curve &nbsp;<math style="vertical-align: -5px">r=f(\theta)</math>&nbsp; with &nbsp;<math style="vertical-align: -4px">\alpha_1\leq \theta \leq \alpha_2</math>&nbsp; is  
 
|-
 
|-
 
|
 
|
Line 16: Line 16:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;You could use trig substitution and let <math style="vertical-align: -1px">x=\tan \theta .</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;You could use trig substitution and let &nbsp;<math style="vertical-align: -1px">x=\tan \theta .</math>
 
|-
 
|-
 
|'''3.''' Recall that <math>\int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C.</math>
 
|'''3.''' Recall that <math>\int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C.</math>

Revision as of 16:26, 26 February 2017

A curve is given in polar coordinates by

Find the length of the curve.

Foundations:  
1. The formula for the arc length    of a polar curve    with    is

       

2. How would you integrate

       You could use trig substitution and let  

3. Recall that


Solution:

Step 1:  
First, we need to calculate .
Since
Using the formula in Foundations, we have

       

Step 2:  
Now, we proceed using trig substitution. Let Then,
So, the integral becomes

       

Step 3:  
Since we have
So, we have

       


Final Answer:  
       

Return to Sample Exam