Difference between revisions of "009C Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 11: | Line 11: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |How do you calculate <math style="vertical-align: -5px">y'</math> for a polar curve <math style="vertical-align: -5px">r=f(\theta)?</math> | + | |How do you calculate <math style="vertical-align: -5px">y'</math> for a polar curve <math style="vertical-align: -5px">r=f(\theta)?</math> |
|- | |- | ||
| | | | ||
− | Since <math style="vertical-align: -5px">x=r\cos(\theta),~y=r\sin(\theta),</math> we have | + | Since <math style="vertical-align: -5px">x=r\cos(\theta),~y=r\sin(\theta),</math> we have |
|- | |- | ||
| | | | ||
Line 39: | Line 39: | ||
<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> | <math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> | ||
|- | |- | ||
− | |Since <math style="vertical-align: - | + | |Since <math style="vertical-align: -4px">r=1+\sin\theta,</math> |
|- | |- | ||
| | | | ||
Line 66: | Line 66: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> | + | |We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> |
|- | |- | ||
− | |So, first we need to find <math>\frac{dy'}{d\theta}.</math> | + | |So, first we need to find <math>\frac{dy'}{d\theta}.</math> |
|- | |- | ||
|We have | |We have | ||
Line 83: | Line 83: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |since <math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math> and <math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2.</math> | + | |since <math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math> and <math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2.</math> |
|} | |} | ||
Line 89: | Line 89: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | Now, using the resulting formula for <math>\frac{dy'}{d\theta},</math> we get | + | | Now, using the resulting formula for <math>\frac{dy'}{d\theta},</math> we get |
|- | |- | ||
| | | | ||
Line 101: | Line 101: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' See | + | | '''(a)''' See (a) above for the graph. |
|- | |- | ||
| '''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math> | | '''(b)''' <math>\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}</math> |
Revision as of 16:21, 26 February 2017
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute .
(c) Compute .
Foundations: |
---|
How do you calculate for a polar curve |
Since we have |
|
Solution:
(a) |
---|
Insert sketch of graph |
(b)
Step 1: |
---|
First, recall we have |
|
Since |
|
Hence, |
|
Step 2: |
---|
Thus, we have
|
(c)
Step 1: |
---|
We have |
So, first we need to find |
We have |
|
since and |
Step 2: |
---|
Now, using the resulting formula for we get |
|
Final Answer: |
---|
(a) See (a) above for the graph. |
(b) |
(c) |