Difference between revisions of "009C Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
|'''1. Ratio Test'''  
 
|'''1. Ratio Test'''  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
+
|&nbsp; &nbsp; &nbsp; &nbsp;Let &nbsp; <math style="vertical-align: -7px">\sum a_n</math> &nbsp; be a series and &nbsp; <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> &nbsp; Then,
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
+
&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -4px">L<1,</math> &nbsp; the series is absolutely convergent.  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
+
&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
+
&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 
|-
 
|-
 
|'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval  
 
|'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">L=1.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;for convergence since the Ratio Test is inconclusive when &nbsp; <math style="vertical-align: -1px">L=1.</math>
 
|}
 
|}
  
Line 52: Line 52:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|So, we have <math style="vertical-align: -6px">|x+2|<1.</math> Hence, our interval is <math style="vertical-align: -3px">(-3,-1).</math> But, we still need to check the endpoints of this interval  
+
|So, we have &nbsp;<math style="vertical-align: -6px">|x+2|<1.</math>&nbsp; Hence, our interval is &nbsp;<math style="vertical-align: -5px">(-3,-1).</math>&nbsp; But, we still need to check the endpoints of this interval  
 
|-
 
|-
 
|to see if they are included in the interval of convergence.
 
|to see if they are included in the interval of convergence.
Line 60: Line 60:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|First, we let <math style="vertical-align: -1px">x=-1.</math> Then, our series becomes  
+
|First, we let &nbsp;<math style="vertical-align: -1px">x=-1.</math> &nbsp; Then, our series becomes  
 
|-
 
|-
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^{\infty} (-1)^n \frac{1}{n^2}.</math>
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^{\infty} (-1)^n \frac{1}{n^2}.</math>
 
|-
 
|-
|Since <math style="vertical-align: -5px">n^2<(n+1)^2,</math> we have <math>\frac{1}{(n+1)^2}<\frac{1}{n^2}.</math> Thus, <math>\frac{1}{n^2}</math> is decreasing.
+
|Since &nbsp;<math style="vertical-align: -5px">n^2<(n+1)^2,</math> &nbsp; we have  
 
|-
 
|-
|So, <math>\sum_{n=0}^{\infty} (-1)^n \frac{1}{n^2}</math> converges by the Alternating Series Test.
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{(n+1)^2}<\frac{1}{n^2}.</math>
 +
|-
 +
|Thus, &nbsp; <math>\frac{1}{n^2}</math> &nbsp; is decreasing.
 +
|-
 +
|So, &nbsp;<math>\sum_{n=0}^{\infty} (-1)^n \frac{1}{n^2}</math> &nbsp; converges by the Alternating Series Test.
 
|}
 
|}
  
Line 73: Line 77:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|Now, we let <math style="vertical-align: -1px">x=-3.</math> Then, our series becomes  
+
|Now, we let &nbsp; <math style="vertical-align: -1px">x=-3.</math>&nbsp; Then, our series becomes  
 
|-
 
|-
 
|
 
|
Line 88: Line 92:
 
!Step 5: &nbsp;
 
!Step 5: &nbsp;
 
|-
 
|-
|Thus, the interval of convergence for this series is <math>[-3,-1].</math>
+
|Thus, the interval of convergence for this series is &nbsp; <math>[-3,-1].</math>
 
|}
 
|}
  

Revision as of 16:10, 26 February 2017

Find the interval of convergence of the following series.

Foundations:  
1. Ratio Test
       Let     be a series and     Then,

       If     the series is absolutely convergent.

       If    the series is divergent.

       If    the test is inconclusive.

2. After you find the radius of convergence, you need to check the endpoints of your interval

       for convergence since the Ratio Test is inconclusive when  


Solution:

Step 1:  
We proceed using the ratio test to find the interval of convergence. So, we have

       

Step 2:  
So, we have    Hence, our interval is    But, we still need to check the endpoints of this interval
to see if they are included in the interval of convergence.
Step 3:  
First, we let     Then, our series becomes

       

Since     we have
       
Thus,     is decreasing.
So,     converges by the Alternating Series Test.
Step 4:  
Now, we let     Then, our series becomes

       

This is a convergent series by the p-test.
Step 5:  
Thus, the interval of convergence for this series is  


Final Answer:  
       

Return to Sample Exam