Difference between revisions of "009C Sample Final 1, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 8: | Line 8: | ||
|'''1.''' '''Ratio Test''' | |'''1.''' '''Ratio Test''' | ||
|- | |- | ||
− | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then, | + | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then, |
|- | |- | ||
| | | |
Revision as of 16:05, 26 February 2017
Determine whether the following series converges or diverges.
Foundations: |
---|
1. Ratio Test |
Let be a series and Then, |
If the series is absolutely convergent. |
If the series is divergent. |
If the test is inconclusive. |
2. If a series absolutely converges, then it also converges. |
Solution:
Step 1: |
---|
We proceed using the ratio test. |
We have |
|
Step 2: |
---|
Now, we continue to calculate the limit from Step 1. We have |
|
Step 3: |
---|
Now, we need to calculate |
First, we write the limit as |
|
Now, we use L'Hopital's Rule to get |
|
Step 4: |
---|
We go back to Step 2 and use the limit we calculated in Step 3. |
So, we have |
|
Thus, the series absolutely converges by the Ratio Test. |
Since the series absolutely converges, the series also converges. |
Final Answer: |
---|
converges |