Difference between revisions of "009A Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
|Recall:
 
|Recall:
 
|-
 
|-
|'''1.''' <math style="vertical-align: -5px">f(x)</math>&thinsp; is increasing when <math style="vertical-align: -5px">f'(x)>0</math>&thinsp; and <math style="vertical-align: -5px">f(x)</math>&thinsp; is decreasing when <math style="vertical-align: -5px">f'(x)<0.</math>
+
|'''1.''' <math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing when <math style="vertical-align: -5px">f'(x)>0</math>&nbsp; and <math style="vertical-align: -5px">f(x)</math>&nbsp; is decreasing when <math style="vertical-align: -5px">f'(x)<0.</math>
 
|-
 
|-
 
|'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum.
 
|'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum.
 
|-
 
|-
|'''3.''' <math style="vertical-align: -5px">f(x)</math>&thinsp; is concave up when <math style="vertical-align: -5px">f''(x)>0</math>&thinsp; and <math style="vertical-align: -5px">f(x)</math>&thinsp; is concave down when <math style="vertical-align: -5px">f''(x)<0.</math>
+
|'''3.''' <math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up when <math style="vertical-align: -5px">f''(x)>0</math>&nbsp; and <math style="vertical-align: -5px">f(x)</math>&nbsp; is concave down when <math style="vertical-align: -5px">f''(x)<0.</math>
 
|-
 
|-
 
|'''4.''' Inflection points occur when <math style="vertical-align: -5px">f''(x)=0.</math>
 
|'''4.''' Inflection points occur when <math style="vertical-align: -5px">f''(x)=0.</math>
Line 33: Line 33:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We start by taking the derivative of <math style="vertical-align: -5px">f(x).</math>&thinsp; We have <math style="vertical-align: -5px">f'(x)=3x^2-12x.</math>
+
|We start by taking the derivative of <math style="vertical-align: -5px">f(x).</math>&nbsp; We have <math style="vertical-align: -5px">f'(x)=3x^2-12x.</math>
 
|-
 
|-
|Now, we set <math style="vertical-align: -5px">f'(x)=0.</math>&thinsp; So, we have &thinsp;<math style="vertical-align: -3px">(-\infty,0),(0,4),(4,\infty).</math><math style="vertical-align: -6px">0=3x(x-4).</math>
+
|Now, we set <math style="vertical-align: -5px">f'(x)=0.</math>&nbsp; So, we have &nbsp;<math style="vertical-align: -3px">(-\infty,0),(0,4),(4,\infty).</math><math style="vertical-align: -6px">0=3x(x-4).</math>
 
|-
 
|-
|Hence, we have <math style="vertical-align: 0px">x=0</math>&thinsp; and <math style="vertical-align: -1px">x=4.</math>
+
|Hence, we have <math style="vertical-align: 0px">x=0</math>&nbsp; and <math style="vertical-align: -1px">x=4.</math>
 
|-
 
|-
|So, these values of <math style="vertical-align: 0px">x</math> break up the number line into 3 intervals: &thinsp;<math style="vertical-align: -5px">(-\infty,0),(0,4),(4,\infty).</math>  
+
|So, these values of <math style="vertical-align: 0px">x</math> break up the number line into 3 intervals: &nbsp;<math style="vertical-align: -5px">(-\infty,0),(0,4),(4,\infty).</math>  
 
|}
 
|}
  
Line 53: Line 53:
 
|For <math style="vertical-align: -5px">x=5,~f'(x)=15>0.</math>
 
|For <math style="vertical-align: -5px">x=5,~f'(x)=15>0.</math>
 
|-
 
|-
|Thus, <math style="vertical-align: -5px">f(x)</math>&thinsp; is increasing on <math style="vertical-align: -5px">(-\infty,0)\cup (4,\infty),</math>&thinsp; and decreasing on <math style="vertical-align: -5px">(0,4).</math>
+
|Thus, <math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on <math style="vertical-align: -5px">(-\infty,0)\cup (4,\infty),</math>&nbsp; and decreasing on <math style="vertical-align: -5px">(0,4).</math>
 
|}
 
|}
  
Line 91: Line 91:
 
|Again, we use test points in these two intervals.
 
|Again, we use test points in these two intervals.
 
|-
 
|-
|For <math style="vertical-align: -5px">x=0,</math>&thinsp; we have <math style="vertical-align: -5px">f''(x)=-12<0.</math>
+
|For <math style="vertical-align: -5px">x=0,</math>&nbsp; we have <math style="vertical-align: -5px">f''(x)=-12<0.</math>
 
|-
 
|-
|For <math style="vertical-align: -5px">x=3,</math>&thinsp; we have <math style="vertical-align: -5px">f''(x)=6>0.</math>
+
|For <math style="vertical-align: -5px">x=3,</math>&nbsp; we have <math style="vertical-align: -5px">f''(x)=6>0.</math>
 
|-
 
|-
|Thus, <math style="vertical-align: -5px">f(x)</math>&thinsp; is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math>
+
|Thus, <math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math>
 
|}
 
|}
  
Line 101: Line 101:
 
!(d) &nbsp;  
 
!(d) &nbsp;  
 
|-
 
|-
| Using the information from part '''(c)''', there is one inflection point that occurs at <math style="vertical-align: 0px">x=2.</math>
+
| Using the information from part (c), there is one inflection point that occurs at <math style="vertical-align: 0px">x=2.</math>
 
|-
 
|-
 
|Now, we have <math style="vertical-align: -5px">f(2)=8-24+5=-11.</math>
 
|Now, we have <math style="vertical-align: -5px">f(2)=8-24+5=-11.</math>
 
|-
 
|-
|So, the inflection point is &thinsp;<math style="vertical-align: -5px">(2,-11).</math>
+
|So, the inflection point is &nbsp;<math style="vertical-align: -5px">(2,-11).</math>
 
|}
 
|}
  
Line 118: Line 118:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' <math style="vertical-align: -5px">f(x)</math>&thinsp; is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty),</math> and decreasing on <math style="vertical-align: -5px">(0,4).</math>
+
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on <math style="vertical-align: -5px">(-\infty,0),(4,\infty),</math> and decreasing on <math style="vertical-align: -5px">(0,4).</math>
 
|-
 
|-
|'''(b)''' The local maximum value is <math style="vertical-align: -5px">f(0)=5,</math>&thinsp; and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math>
+
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;The local maximum value is <math style="vertical-align: -5px">f(0)=5,</math>&nbsp; and the local minimum value is <math style="vertical-align: -5px">f(4)=-27.</math>
 
|-
 
|-
|'''(c)''' <math style="vertical-align: -5px">f(x)</math>&thinsp; is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math>
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up on the interval <math style="vertical-align: -5px">(2,\infty),</math> and concave down on the interval <math style="vertical-align: -5px">(-\infty,2).</math>
 
|-
 
|-
|'''(d)''' <math style="vertical-align: -5px">(2,-11)</math>
+
|&nbsp; &nbsp;'''(d)''' &nbsp; &nbsp;<math style="vertical-align: -5px">(2,-11)</math>
 
|-
 
|-
|'''(e)''' See graph in '''(e)'''.
+
|&nbsp; &nbsp;'''(e)''' &nbsp; &nbsp;See graph above.
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:06, 25 February 2017

Given the function ,

(a) Find the intervals in which the function increases or decreases.

(b) Find the local maximum and local minimum values.

(c) Find the intervals in which the function concaves upward or concaves downward.

(d) Find the inflection point(s).

(e) Use the above information (a) to (d) to sketch the graph of .

Foundations:  
Recall:
1.   is increasing when   and   is decreasing when
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when   and   is concave down when
4. Inflection points occur when


Solution:

(a)

Step 1:  
We start by taking the derivative of   We have
Now, we set   So, we have  
Hence, we have   and
So, these values of break up the number line into 3 intervals:  
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For
For
For
Thus,   is increasing on   and decreasing on

(b)

Step 1:  
By the First Derivative Test, the local maximum occurs at and the local minimum occurs at
Step 2:  
So, the local maximum value is and the local minimum value is

(c)

Step 1:  
To find the intervals when the function is concave up or concave down, we need to find
We have
We set
So, we have Hence,
This value breaks up the number line into two intervals:
Step 2:  
Again, we use test points in these two intervals.
For   we have
For   we have
Thus,   is concave up on the interval and concave down on the interval
(d)  
Using the information from part (c), there is one inflection point that occurs at
Now, we have
So, the inflection point is  
(e)  
Insert sketch here.


Final Answer:  
   (a)      is increasing on and decreasing on
   (b)    The local maximum value is   and the local minimum value is
   (c)      is concave up on the interval and concave down on the interval
   (d)    
   (e)    See graph above.

Return to Sample Exam