Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 67: | Line 67: | ||
| <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),</math> | | <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),</math> | ||
|- | |- | ||
− | |<math>f(x)</math> is continuous. | + | |<math style="vertical-align: -5px">f(x)</math> is continuous. |
|} | |} | ||
Revision as of 17:32, 25 February 2017
Consider the following piecewise defined function:
(a) Show that is continuous at .
(b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .
Foundations: |
---|
1. is continuous at if |
2. The definition of derivative for is |
Solution:
(a)
Step 1: |
---|
We first calculate We have |
|
Step 2: |
---|
Now, we calculate We have |
|
Step 3: |
---|
Now, we calculate We have |
|
Since |
is continuous. |
(b)
Step 1: |
---|
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have |
|
Step 2: |
---|
Now, we have |
|
Step 3: |
---|
Since |
is differentiable at |
Final Answer: |
---|
(a) Since is continuous. |
(b) Since |
is differentiable at |