Difference between revisions of "009A Sample Final 1, Problem 1"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 9: | Line 9: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| − | |||
| − | |||
|- | |- | ||
|'''L'Hôpital's Rule''' | |'''L'Hôpital's Rule''' | ||
|- | |- | ||
| − | |Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>  and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>  are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> | + | | Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>  and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>  are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> |
|- | |- | ||
| | | | ||
| − | + | If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>  is finite or  <math style="vertical-align: -4px">\pm \infty ,</math> | |
|- | |- | ||
| | | | ||
| − | + | then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> | |
|} | |} | ||
| Line 34: | Line 32: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math> | |
|- | |- | ||
|So, we can cancel <math style="vertical-align: -2px">x+3</math>  in the numerator and denominator. Thus, we have | |So, we can cancel <math style="vertical-align: -2px">x+3</math>  in the numerator and denominator. Thus, we have | ||
|- | |- | ||
| | | | ||
| − | + | <math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.</math> | |
|} | |} | ||
| Line 48: | Line 46: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\frac{(-3)(-3-3)}{2}\,=\,\frac{18}{2}\,=\,9.</math> | |
|} | |} | ||
| Line 59: | Line 57: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\ | \displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\ | ||
&&\\ | &&\\ | ||
| Line 69: | Line 67: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |This limit is& | + | |This limit is <math>+\infty.</math> |
|} | |} | ||
| Line 80: | Line 78: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.</math> | |
|- | |- | ||
|Since we are looking at the limit as <math style="vertical-align: 0px">x</math> goes to negative infinity, we have <math style="vertical-align: -2px">\sqrt{x^2}=-x.</math> | |Since we are looking at the limit as <math style="vertical-align: 0px">x</math> goes to negative infinity, we have <math style="vertical-align: -2px">\sqrt{x^2}=-x.</math> | ||
| Line 87: | Line 85: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math> | |
|} | |} | ||
| Line 96: | Line 94: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math> | |
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
| | | | ||
| − | + | <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math> | |
|} | |} | ||
| Line 108: | Line 106: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)'''& | + | | '''(a)''' <math style="vertical-align: 0px">9</math> |
|- | |- | ||
| − | |'''(b)'''& | + | | '''(b)''' <math style="vertical-align: 0px">+\infty</math> |
|- | |- | ||
| − | |'''(c)'''& | + | | '''(c)''' <math style="vertical-align: -15px">-\frac{3}{2}</math> |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 16:25, 25 February 2017
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}}
(c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}}
| Foundations: |
|---|
| L'Hôpital's Rule |
| Suppose that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} f(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} g(x)} are both zero or both Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm \infty .} |
|
If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}} is finite or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm \infty ,} |
|
then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.} |
Solution:
(a)
| Step 1: |
|---|
| We begin by factoring the numerator. We have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.} |
| So, we can cancel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+3} in the numerator and denominator. Thus, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.} |
| Step 2: |
|---|
| Now, we can just plug in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-3} to get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\frac{(-3)(-3-3)}{2}\,=\,\frac{18}{2}\,=\,9.} |
(b)
| Step 1: |
|---|
| We proceed using L'Hôpital's Rule. So, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{\cos(2x)}{x}.}\\ \end{array}} |
| Step 2: |
|---|
| This limit is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +\infty.} |
(c)
| Step 1: |
|---|
| We have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.} |
| Since we are looking at the limit as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} goes to negative infinity, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x^2}=-x.} |
| So, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.} |
| Step 2: |
|---|
| We simplify to get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.} |
| So, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +\infty} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{3}{2}} |