Difference between revisions of "009A Sample Final 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 9: | Line 9: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
− | |||
− | |||
|- | |- | ||
|'''L'Hôpital's Rule''' | |'''L'Hôpital's Rule''' | ||
|- | |- | ||
− | |Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>  and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>  are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> | + | | Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>  and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>  are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> |
|- | |- | ||
| | | | ||
− | + | If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>  is finite or  <math style="vertical-align: -4px">\pm \infty ,</math> | |
|- | |- | ||
| | | | ||
− | + | then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> | |
|} | |} | ||
Line 34: | Line 32: | ||
|- | |- | ||
| | | | ||
− | + | <math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math> | |
|- | |- | ||
|So, we can cancel <math style="vertical-align: -2px">x+3</math>  in the numerator and denominator. Thus, we have | |So, we can cancel <math style="vertical-align: -2px">x+3</math>  in the numerator and denominator. Thus, we have | ||
|- | |- | ||
| | | | ||
− | + | <math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.</math> | |
|} | |} | ||
Line 48: | Line 46: | ||
|- | |- | ||
| | | | ||
− | + | <math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\frac{(-3)(-3-3)}{2}\,=\,\frac{18}{2}\,=\,9.</math> | |
|} | |} | ||
Line 59: | Line 57: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\ | \displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\ | ||
&&\\ | &&\\ | ||
Line 69: | Line 67: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |This limit is& | + | |This limit is <math>+\infty.</math> |
|} | |} | ||
Line 80: | Line 78: | ||
|- | |- | ||
| | | | ||
− | + | <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.</math> | |
|- | |- | ||
|Since we are looking at the limit as <math style="vertical-align: 0px">x</math> goes to negative infinity, we have <math style="vertical-align: -2px">\sqrt{x^2}=-x.</math> | |Since we are looking at the limit as <math style="vertical-align: 0px">x</math> goes to negative infinity, we have <math style="vertical-align: -2px">\sqrt{x^2}=-x.</math> | ||
Line 87: | Line 85: | ||
|- | |- | ||
| | | | ||
− | + | <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math> | |
|} | |} | ||
Line 96: | Line 94: | ||
|- | |- | ||
| | | | ||
− | + | <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math> | |
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
| | | | ||
− | + | <math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math> | |
|} | |} | ||
Line 108: | Line 106: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)'''& | + | | '''(a)''' <math style="vertical-align: 0px">9</math> |
|- | |- | ||
− | |'''(b)'''& | + | | '''(b)''' <math style="vertical-align: 0px">+\infty</math> |
|- | |- | ||
− | |'''(c)'''& | + | | '''(c)''' <math style="vertical-align: -15px">-\frac{3}{2}</math> |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 17:25, 25 February 2017
In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
(a)
(b)
(c)
Foundations: |
---|
L'Hôpital's Rule |
Suppose that and are both zero or both |
If is finite or |
then |
Solution:
(a)
Step 1: |
---|
We begin by factoring the numerator. We have |
|
So, we can cancel in the numerator and denominator. Thus, we have |
|
Step 2: |
---|
Now, we can just plug in to get |
|
(b)
Step 1: |
---|
We proceed using L'Hôpital's Rule. So, we have |
|
Step 2: |
---|
This limit is |
(c)
Step 1: |
---|
We have |
|
Since we are looking at the limit as goes to negative infinity, we have |
So, we have |
|
Step 2: |
---|
We simplify to get |
|
So, we have |
|
Final Answer: |
---|
(a) |
(b) |
(c) |