Difference between revisions of "009C Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">A curve is given in polar coordinates by  
 
<span class="exam">A curve is given in polar coordinates by  
::::::<span class="exam"><math>r=\theta</math>
+
::<span class="exam"><math>r=\theta</math>
::::::<span class="exam"><math>0\leq \theta \leq 2\pi</math>
+
::<span class="exam"><math>0\leq \theta \leq 2\pi</math>
  
 
<span class="exam">Find the length of the curve.
 
<span class="exam">Find the length of the curve.
Line 11: Line 11:
 
|-
 
|-
 
|
 
|
::<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta.</math>
 
|-
 
|-
 
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sqrt{1+x^2}~dx?</math>
 
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sqrt{1+x^2}~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use trig substitution and let <math style="vertical-align: -1px">x=\tan \theta .</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;You could use trig substitution and let <math style="vertical-align: -1px">x=\tan \theta .</math>
 
|-
 
|-
 
|'''3.''' Recall that <math>\int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C.</math>
 
|'''3.''' Recall that <math>\int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 33: Line 34:
 
|-
 
|-
 
|
 
|
::<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta.</math>
 
|}
 
|}
  
Line 44: Line 45:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{L} & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx}\\
 
\displaystyle{L} & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx}\\
 
&&\\
 
&&\\
Line 61: Line 62:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\
 
\displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\
 
&&\\
 
&&\\
Line 67: Line 68:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; <math>\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:14, 25 February 2017

A curve is given in polar coordinates by

Find the length of the curve.

Foundations:  
1. The formula for the arc length of a polar curve with is

       

2. How would you integrate

       You could use trig substitution and let

3. Recall that


Solution:

Step 1:  
First, we need to calculate .
Since
Using the formula in Foundations, we have

       

Step 2:  
Now, we proceed using trig substitution. Let Then,
So, the integral becomes

       

Step 3:  
Since we have
So, we have

       


Final Answer:  
       

Return to Sample Exam