Difference between revisions of "009C Sample Final 1, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam">A curve is given in polar coordinates by | <span class="exam">A curve is given in polar coordinates by | ||
− | + | ::<span class="exam"><math>r=\theta</math> | |
− | + | ::<span class="exam"><math>0\leq \theta \leq 2\pi</math> | |
<span class="exam">Find the length of the curve. | <span class="exam">Find the length of the curve. | ||
Line 11: | Line 11: | ||
|- | |- | ||
| | | | ||
− | + | <math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta.</math> | |
|- | |- | ||
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sqrt{1+x^2}~dx?</math> | |'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sqrt{1+x^2}~dx?</math> | ||
|- | |- | ||
| | | | ||
− | + | You could use trig substitution and let <math style="vertical-align: -1px">x=\tan \theta .</math> | |
|- | |- | ||
|'''3.''' Recall that <math>\int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C.</math> | |'''3.''' Recall that <math>\int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C.</math> | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 33: | Line 34: | ||
|- | |- | ||
| | | | ||
− | + | <math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta.</math> | |
|} | |} | ||
Line 44: | Line 45: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{L} & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx}\\ | \displaystyle{L} & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx}\\ | ||
&&\\ | &&\\ | ||
Line 61: | Line 62: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\ | \displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\ | ||
&&\\ | &&\\ | ||
Line 67: | Line 68: | ||
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math>\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|</math> | + | | <math>\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 17:14, 25 February 2017
A curve is given in polar coordinates by
Find the length of the curve.
Foundations: |
---|
1. The formula for the arc length of a polar curve with is |
|
2. How would you integrate |
You could use trig substitution and let |
3. Recall that |
Solution:
Step 1: |
---|
First, we need to calculate . |
Since |
Using the formula in Foundations, we have |
|
Step 2: |
---|
Now, we proceed using trig substitution. Let Then, |
So, the integral becomes |
|
Step 3: |
---|
Since we have |
So, we have |
|
Final Answer: |
---|