Difference between revisions of "009C Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">A curve is given in polar coordinates by  
 
<span class="exam">A curve is given in polar coordinates by  
::::::<math>r=1+\sin 2\theta</math>
+
::<math>r=1+\sin 2\theta</math>
::::::<math>0\leq \theta \leq 2\pi</math>
+
::<math>0\leq \theta \leq 2\pi</math>
  
::<span class="exam">a) Sketch the curve.
+
<span class="exam">(a) Sketch the curve.
  
::<span class="exam">b) Find the area enclosed by the curve.
+
<span class="exam">(b) Find the area enclosed by the curve.
  
  
Line 14: Line 14:
 
|-
 
|-
 
|
 
|
::<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math> for appropriate values of <math>\alpha_1,\alpha_2.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math> for appropriate values of <math>\alpha_1,\alpha_2.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 70: Line 71:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' See Step 1 above.
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See Step 1 above.
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' <math>\frac{3\pi}{2}</math>
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{3\pi}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:10, 25 February 2017

A curve is given in polar coordinates by

(a) Sketch the curve.

(b) Find the area enclosed by the curve.


Foundations:  
The area under a polar curve is given by

        for appropriate values of


Solution:

(a)

Step 1:  
Insert sketch


(b)

Step 1:  
Since the graph has symmetry (as seen in the graph), the area of the curve is
Step 2:  
Using the double angle formula for we have
Step 3:  
Lastly, we evaluate to get


Final Answer:  
   (a)     See Step 1 above.
   (b)    

Return to Sample Exam