Difference between revisions of "009C Sample Final 1, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
|-
 
|-
 
|
 
|
::<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 65: Line 66:
 
|-
 
|-
 
|
 
|
::<math>T_4(x)=\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>T_4(x)=\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3.</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; <math>\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{2}+-1\bigg(x-\frac{\pi}{4}\bigg)+\frac{2}{3}\bigg(x-\frac{\pi}{4}\bigg)^3</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:05, 25 February 2017

Find the Taylor polynomial of degree 4 of at .

Foundations:  
The Taylor polynomial of at is

        where


Solution:

Step 1:  
First, we make a table to find the coefficients of the Taylor polynomial.
Step 2:  
Since the Taylor polynomial of degree 4 of is

       


Final Answer:  
       

Return to Sample Exam