Difference between revisions of "009C Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Determine whether the following series converges or diverges.
 
<span class="exam">Determine whether the following series converges or diverges.
  
::::::<math>\sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}</math>
+
::<math>\sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|Recall:
+
|'''1.'''  '''Ratio Test'''
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
::'''1. Ratio Test''' Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then,
 
 
|-
 
|-
 
|
 
|
:::If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
+
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent.  
 
|-
 
|-
 
|
 
|
:::If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
+
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L>1,</math> the series is divergent.
 
|-
 
|-
 
|
 
|
:::If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
+
&nbsp; &nbsp; &nbsp; &nbsp;If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive.
 
|-
 
|-
 
|
 
|
::'''2.''' If a series absolutely converges, then it also converges.  
+
'''2.''' If a series absolutely converges, then it also converges.  
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 34: Line 34:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}\frac{n^n}{(-1)^n n!}\bigg|}\\
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}\frac{n^n}{(-1)^n n!}\bigg|}\\
 
&&\\
 
&&\\
Line 53: Line 53:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\
 
&&\\
 
&&\\
Line 72: Line 72:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math>
 
|-
 
|-
 
|Now, we use L'Hopital's Rule to get  
 
|Now, we use L'Hopital's Rule to get  
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)} & \overset{l'H}{=} & \displaystyle{\lim_{n \rightarrow \infty}\frac{\frac{n+1}{n}\frac{(n+1)-n}{(n+1)^2}}{-\frac{1}{n^2}}}\\
 
\displaystyle{\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)} & \overset{l'H}{=} & \displaystyle{\lim_{n \rightarrow \infty}\frac{\frac{n+1}{n}\frac{(n+1)-n}{(n+1)^2}}{-\frac{1}{n^2}}}\\
 
&&\\
 
&&\\
Line 96: Line 96:
 
|-
 
|-
 
|
 
|
::<math>\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.</math>
 
|-
 
|-
 
|Thus, the series absolutely converges by the Ratio Test.
 
|Thus, the series absolutely converges by the Ratio Test.
Line 102: Line 102:
 
|Since the series absolutely converges, the series also converges.
 
|Since the series absolutely converges, the series also converges.
 
|}
 
|}
 +
 +
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  

Revision as of 15:56, 25 February 2017

Determine whether the following series converges or diverges.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}}
Foundations:  
1. Ratio Test
        Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum a_n} be a series and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.} Then,

       If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L<1,} the series is absolutely convergent.

       If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L>1,} the series is divergent.

       If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=1,} the test is inconclusive.

2. If a series absolutely converges, then it also converges.


Solution:

Step 1:  
We proceed using the ratio test.
We have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}\frac{n^n}{(-1)^n n!}\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)n!}{n!}\frac{n^n}{(n+1)^{n+1}}\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(n+1)n^n}{(n+1)(n+1)^n}\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\bigg(\frac{n}{n+1}\bigg)^n\bigg|}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n.}\\ \end{array}}

Step 2:  
Now, we continue to calculate the limit from Step 1. We have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}e^{\ln(\frac{n}{n+1})^n}}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty}e^{n\ln(\frac{n}{n+1})}}\\ &&\\ & = & \displaystyle{e^{\lim_{n \rightarrow \infty}n\ln(\frac{n}{n+1})}.}\\ \end{array}}

Step 3:  
Now, we need to calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg).}
First, we write the limit as

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.}

Now, we use L'Hopital's Rule to get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)} & \overset{l'H}{=} & \displaystyle{\lim_{n \rightarrow \infty}\frac{\frac{n+1}{n}\frac{(n+1)-n}{(n+1)^2}}{-\frac{1}{n^2}}}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty} \frac{1}{n(n+1)}(-n^2)}\\ &&\\ & = & \displaystyle{\lim_{n \rightarrow \infty} \frac{-n}{n+1}}\\ &&\\ & = & \displaystyle{-1.}\\ \end{array}}

Step 4:  
We go back to Step 2 and use the limit we calculated in Step 3.
So, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.}

Thus, the series absolutely converges by the Ratio Test.
Since the series absolutely converges, the series also converges.


Final Answer:  
   The series converges.

Return to Sample Exam