Difference between revisions of "009C Sample Final 1, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam">Determine whether the following series converges or diverges. | <span class="exam">Determine whether the following series converges or diverges. | ||
− | + | ::<math>\sum_{n=0}^{\infty} (-1)^n \frac{n!}{n^n}</math> | |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' '''Ratio Test''' |
|- | |- | ||
− | | | + | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> Then, |
− | |||
|- | |- | ||
| | | | ||
− | + | If <math style="vertical-align: -1px">L<1,</math> the series is absolutely convergent. | |
|- | |- | ||
| | | | ||
− | + | If <math style="vertical-align: -1px">L>1,</math> the series is divergent. | |
|- | |- | ||
| | | | ||
− | + | If <math style="vertical-align: -1px">L=1,</math> the test is inconclusive. | |
|- | |- | ||
| | | | ||
− | + | '''2.''' If a series absolutely converges, then it also converges. | |
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 34: | Line 34: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}\frac{n^n}{(-1)^n n!}\bigg|}\\ | \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(n+1)!}{(n+1)^{n+1}}\frac{n^n}{(-1)^n n!}\bigg|}\\ | ||
&&\\ | &&\\ | ||
Line 53: | Line 53: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\ | \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^n}\\ | ||
&&\\ | &&\\ | ||
Line 72: | Line 72: | ||
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -16px">\lim_{n \rightarrow \infty}\frac{\ln\bigg(\frac{n}{n+1}\bigg)}{\frac{1}{n}}.</math> | |
|- | |- | ||
|Now, we use L'Hopital's Rule to get | |Now, we use L'Hopital's Rule to get | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)} & \overset{l'H}{=} & \displaystyle{\lim_{n \rightarrow \infty}\frac{\frac{n+1}{n}\frac{(n+1)-n}{(n+1)^2}}{-\frac{1}{n^2}}}\\ | \displaystyle{\lim_{n \rightarrow \infty}n\ln\bigg(\frac{n}{n+1}\bigg)} & \overset{l'H}{=} & \displaystyle{\lim_{n \rightarrow \infty}\frac{\frac{n+1}{n}\frac{(n+1)-n}{(n+1)^2}}{-\frac{1}{n^2}}}\\ | ||
&&\\ | &&\\ | ||
Line 96: | Line 96: | ||
|- | |- | ||
| | | | ||
− | + | <math>\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|=e^{-1}=\frac{1}{e}<1.</math> | |
|- | |- | ||
|Thus, the series absolutely converges by the Ratio Test. | |Thus, the series absolutely converges by the Ratio Test. | ||
Line 102: | Line 102: | ||
|Since the series absolutely converges, the series also converges. | |Since the series absolutely converges, the series also converges. | ||
|} | |} | ||
+ | |||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: |
Revision as of 16:56, 25 February 2017
Determine whether the following series converges or diverges.
Foundations: |
---|
1. Ratio Test |
Let be a series and Then, |
If the series is absolutely convergent. |
If the series is divergent. |
If the test is inconclusive. |
2. If a series absolutely converges, then it also converges. |
Solution:
Step 1: |
---|
We proceed using the ratio test. |
We have |
|
Step 2: |
---|
Now, we continue to calculate the limit from Step 1. We have |
|
Step 3: |
---|
Now, we need to calculate |
First, we write the limit as |
|
Now, we use L'Hopital's Rule to get |
|
Step 4: |
---|
We go back to Step 2 and use the limit we calculated in Step 3. |
So, we have |
|
Thus, the series absolutely converges by the Ratio Test. |
Since the series absolutely converges, the series also converges. |
Final Answer: |
---|
The series converges. |