Difference between revisions of "009C Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 32: | Line 32: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\sum_{n=0}^{\infty} (-2)^n e^{-n}} & = & \displaystyle{\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n}}\\ | \displaystyle{\sum_{n=0}^{\infty} (-2)^n e^{-n}} & = & \displaystyle{\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n}}\\ | ||
&&\\ | &&\\ | ||
Line 45: | Line 45: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\sum_{n=0}^{\infty} (-2)^ne^{-n}} & = & \displaystyle{\frac{1}{1+\frac{2}{e}}}\\ | \displaystyle{\sum_{n=0}^{\infty} (-2)^ne^{-n}} & = & \displaystyle{\frac{1}{1+\frac{2}{e}}}\\ | ||
&&\\ | &&\\ | ||
Line 66: | Line 66: | ||
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}.</math> | |
|} | |} | ||
Line 75: | Line 75: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\sum_{n=1}^{\infty}\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)} & = & \displaystyle{\lim_{k\rightarrow \infty} s_k}\\ | \displaystyle{\sum_{n=1}^{\infty}\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)} & = & \displaystyle{\lim_{k\rightarrow \infty} s_k}\\ | ||
&&\\ | &&\\ |
Revision as of 16:51, 25 February 2017
Find the sum of the following series:
(a)
(b)
Foundations: |
---|
1. For a geometric series with |
|
2. For a telescoping series, we find the sum by first looking at the partial sum |
and then calculate |
Solution:
(a)
Step 1: |
---|
First, we write |
|
Step 2: |
---|
Since So, |
|
(b)
Step 1: |
---|
This is a telescoping series. First, we find the partial sum of this series. |
Let |
Then, |
|
Step 2: |
---|
Thus, |
|
Final Answer: |
---|
(a) |
(b) |