Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 32: Line 32:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=0}^{\infty} (-2)^n e^{-n}} & = & \displaystyle{\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n}}\\
 
\displaystyle{\sum_{n=0}^{\infty} (-2)^n e^{-n}} & = & \displaystyle{\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n}}\\
 
&&\\
 
&&\\
Line 45: Line 45:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=0}^{\infty} (-2)^ne^{-n}} & = & \displaystyle{\frac{1}{1+\frac{2}{e}}}\\
 
\displaystyle{\sum_{n=0}^{\infty} (-2)^ne^{-n}} & = & \displaystyle{\frac{1}{1+\frac{2}{e}}}\\
 
&&\\
 
&&\\
Line 66: Line 66:
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}.</math>
 
|}
 
|}
  
Line 75: Line 75:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=1}^{\infty}\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)} & = & \displaystyle{\lim_{k\rightarrow \infty} s_k}\\
 
\displaystyle{\sum_{n=1}^{\infty}\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)} & = & \displaystyle{\lim_{k\rightarrow \infty} s_k}\\
 
&&\\
 
&&\\

Revision as of 16:51, 25 February 2017

Find the sum of the following series:

(a)

(b)

Foundations:  

1. For a geometric series with

       

2. For a telescoping series, we find the sum by first looking at the partial sum

       and then calculate


Solution:

(a)

Step 1:  
First, we write

       

Step 2:  
Since So,

       

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let
Then,

       

Step 2:  
Thus,

       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam