Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
:::and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k.</math>
 
:::and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 84: Line 85:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' <math>\frac{e}{e+2}</math>
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{e}{e+2}</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' <math>\frac{1}{2}</math>
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{1}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:46, 25 February 2017

Find the sum of the following series:

(a)

(b)

Foundations:  
Recall:
1. For a geometric series with
2. For a telescoping series, we find the sum by first looking at the partial sum
and then calculate


Solution:

(a)

Step 1:  
First, we write
Step 2:  
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2<e,~\bigg|-\frac{2}{e}\bigg|<1.} So,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\sum_{n=0}^{\infty} (-2)^ne^{-n}} & = & \displaystyle{\frac{1}{1+\frac{2}{e}}}\\ &&\\ & = & \displaystyle{\frac{1}{\frac{e+2}{e}}}\\ &&\\ & = & \displaystyle{\frac{e}{e+2}.}\\ \end{array}}

(b)

Step 1:  
This is a telescoping series. First, we find the partial sum of this series.
Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).}
Then,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_k=\frac{1}{2}-\frac{1}{2^{k+1}}.}
Step 2:  
Thus,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\sum_{n=1}^{\infty}\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)} & = & \displaystyle{\lim_{k\rightarrow \infty} s_k}\\ &&\\ & = & \displaystyle{\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}}\\ &&\\ & = & \displaystyle{\frac{1}{2}.}\\ \end{array}}


Final Answer:  
   (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{e}{e+2}}
   (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}

Return to Sample Exam