Difference between revisions of "009C Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 19: Line 19:
 
&nbsp; &nbsp; &nbsp; &nbsp;then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
&nbsp; &nbsp; &nbsp; &nbsp;then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 77: Line 78:
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1.</math>
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1.</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 16:45, 25 February 2017

Compute

(a)

(b)

Foundations:  
L'Hopital's Rule

        Suppose that and are both zero or both

       If is finite or

       then


Solution:

(a)

Step 1:  
First, we switch to the limit to so that we can use L'Hopital's rule.
So, we have

       

Step 2:  
Hence, we have

       

(b)

Step 1:  
Again, we switch to the limit to so that we can use L'Hopital's rule.
So, we have

       

Step 2:  
Hence, we have

       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam