Difference between revisions of "009C Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 32: Line 32:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\
 
\displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\
 
&&\\
 
&&\\
Line 47: Line 47:
 
|-
 
|-
 
|
 
|
::<math>\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}=\frac{-2}{5}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}=\frac{-2}{5}.</math>
 
|}
 
|}
  
Line 60: Line 60:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x \rightarrow \infty}\frac{\ln x}{\ln(3x)}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{\frac{1}{x}}{\frac{3}{3x}}}\\
 
\displaystyle{\lim_{x \rightarrow \infty}\frac{\ln x}{\ln(3x)}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{\frac{1}{x}}{\frac{3}{3x}}}\\
 
&&\\
 
&&\\
Line 75: Line 75:
 
|-
 
|-
 
|
 
|
::<math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1.</math>
 
|}
 
|}
  
Line 81: Line 81:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' <math style="vertical-align: -14px">\frac{-2}{5}</math>
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -14px">\frac{-2}{5}</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' <math style="vertical-align: -3px">1</math>  
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -3px">1</math>  
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:43, 25 February 2017

Compute

(a)

(b)

Foundations:  
L'Hopital's Rule

        Suppose that and are both zero or both

       If is finite or

       then

Solution:

(a)

Step 1:  
First, we switch to the limit to so that we can use L'Hopital's rule.
So, we have

       

Step 2:  
Hence, we have

       

(b)

Step 1:  
Again, we switch to the limit to so that we can use L'Hopital's rule.
So, we have

       

Step 2:  
Hence, we have

       

Final Answer:  
   (a)    
   (b)    

Return to Sample Exam