Difference between revisions of "009B Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
::<span class="exam">a) State '''both parts''' of the Fundamental Theorem of Calculus.
+
<span class="exam">(a) State '''both parts''' of the Fundamental Theorem of Calculus.
  
::<span class="exam">b) Evaluate the integral
+
<span class="exam">(b) Evaluate the integral
  
::::<math>\int_0^1 \frac{d}{dx} \bigg(e^{\tan^{-1}(x)}\bigg)dx</math>
+
::<math>\int_0^1 \frac{d}{dx} \bigg(e^{\tan^{-1}(x)}\bigg)dx</math>
  
::<span class="exam">c) Compute
+
<span class="exam">(c) Compute
  
::::<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt</math>
+
::<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 19:22, 18 February 2017

(a) State both parts of the Fundamental Theorem of Calculus.

(b) Evaluate the integral

(c) Compute

Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam