|
|
Line 1: |
Line 1: |
− | ::<span class="exam">a) State '''both parts''' of the Fundamental Theorem of Calculus.
| + | <span class="exam">(a) State '''both parts''' of the Fundamental Theorem of Calculus. |
| | | |
− | ::<span class="exam">b) Evaluate the integral
| + | <span class="exam">(b) Evaluate the integral |
| | | |
− | ::::<math>\int_0^1 \frac{d}{dx} \bigg(e^{\tan^{-1}(x)}\bigg)dx</math>
| + | ::<math>\int_0^1 \frac{d}{dx} \bigg(e^{\tan^{-1}(x)}\bigg)dx</math> |
| | | |
− | ::<span class="exam">c) Compute
| + | <span class="exam">(c) Compute |
| | | |
− | ::::<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt</math>
| + | ::<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt</math> |
| | | |
| {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 19:22, 18 February 2017
(a) State both parts of the Fundamental Theorem of Calculus.
(b) Evaluate the integral

(c) Compute

Solution:
(a)
(b)
(c)
Final Answer:
|
(a)
|
(b)
|
(c)
|
Return to Sample Exam