Difference between revisions of "009B Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
::<span class="exam">a) State '''both parts''' of the Fundamental Theorem of Calculus.
+
<span class="exam">(a) State '''both parts''' of the Fundamental Theorem of Calculus.
  
::<span class="exam">b) Evaluate the integral
+
<span class="exam">(b) Evaluate the integral
  
::::<math>\int_0^1 \frac{d}{dx} \bigg(e^{\tan^{-1}(x)}\bigg)dx</math>
+
::<math>\int_0^1 \frac{d}{dx} \bigg(e^{\tan^{-1}(x)}\bigg)dx</math>
  
::<span class="exam">c) Compute
+
<span class="exam">(c) Compute
  
::::<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt</math>
+
::<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 18:22, 18 February 2017

(a) State both parts of the Fundamental Theorem of Calculus.

(b) Evaluate the integral

(c) Compute

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt}
Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam