Difference between revisions of "009B Sample Final 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
::<span class="exam">a) Find the area of the surface obtained by rotating the arc of the curve  
+
<span class="exam">(a) Find the area of the surface obtained by rotating the arc of the curve  
  
::::<math>y^3=x</math>
+
::<math>y^3=x</math>
  
::<span class="exam">between <math>(0,0)</math> and <math>(1,1)</math> about the <math>y</math>-axis.
+
<span class="exam">between <math>(0,0)</math> and <math>(1,1)</math> about the <math>y</math>-axis.
  
::<span class="exam">b) Find the length of the arc  
+
<span class="exam">(b) Find the length of the arc  
  
::::<math>y=1+9x^{\frac{3}{2}}</math>
+
::<math>y=1+9x^{\frac{3}{2}}</math>
  
::<span class="exam">between the points <math>(1,10)</math> and <math>(4,73).</math>
+
<span class="exam">between the points <math>(1,10)</math> and <math>(4,73).</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 22: Line 22:
 
|
 
|
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 86: Line 87:
 
|
 
|
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 19:21, 18 February 2017

(a) Find the area of the surface obtained by rotating the arc of the curve

between and about the -axis.

(b) Find the length of the arc

between the points and

Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
(a)
(b)
(c)

Return to Sample Exam