Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Compute the following integrals.
 
<span class="exam"> Compute the following integrals.
  
<span class="exam">a) <math>\int e^x(x+\sin(e^x))~dx</math>
+
<span class="exam">(a) <math>\int e^x(x+\sin(e^x))~dx</math>
  
<span class="exam">b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math>
+
<span class="exam">(b) <math>\int \frac{2x^2+1}{2x^2+x}~dx</math>
  
<span class="exam">c) <math>\int \sin^3x~dx</math>
+
<span class="exam">(c) <math>\int \sin^3x~dx</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 18: Line 18:
 
|'''3.''' We have the Pythagorean identity <math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x)</math>.
 
|'''3.''' We have the Pythagorean identity <math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x)</math>.
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 172: Line 173:
 
|
 
|
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 19:11, 18 February 2017

Compute the following integrals.

(a)

(b)

(c)

Foundations:  
Recall:
1. Integration by parts tells us that .
2. Through partial fraction decomposition, we can write the fraction    for some constants .
3. We have the Pythagorean identity .


Solution:

(a)

Step 1:  
We first distribute to get
Now, for the first integral on the right hand side of the last equation, we use integration by parts.
Let and . Then, and .
So, we have
Step 2:  
Now, for the one remaining integral, we use -substitution.
Let . Then, .
So, we have

(b)

Step 1:  
First, we add and subtract from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since , we let .
Multiplying both sides of the last equation by ,
we get .
If we let , the last equation becomes .
If we let , then we get  . Thus, .
So, in summation, we have  .
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have
Step 4:  
For the final remaining integral, we use -substitution.
Let . Then, and  .
Thus, our final integral becomes
Therefore, the final answer is

(c)

Step 1:  
First, we write .
Using the identity , we get .
If we use this identity, we have
    .
Step 2:  
Now, we proceed by -substitution. Let . Then, .
So we have


Final Answer:  
(a)  
(b)  
(c)  

Return to Sample Exam