Difference between revisions of "009A Sample Final 3, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Let <math>y=\tan(x).</math>
 
<span class="exam">Let <math>y=\tan(x).</math>
  
::<span class="exam">a) Find the differential <math>dy</math> of <math>y=\tan (x)</math> at <math>x=\frac{\pi}{4}.</math>  
+
<span class="exam">(a) Find the differential <math>dy</math> of <math>y=\tan (x)</math> at <math>x=\frac{\pi}{4}.</math>  
  
::<span class="exam">b) Use differentials to find an approximate value for <math>\tan(0.885).</math> Hint: <math>\frac{\pi}{4}\approx 0.785.</math>
+
<span class="exam">(b) Use differentials to find an approximate value for <math>\tan(0.885).</math> Hint: <math>\frac{\pi}{4}\approx 0.785.</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 16: Line 16:
 
|
 
|
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 84: Line 85:
 
|
 
|
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 19:04, 18 February 2017

Let

(a) Find the differential of at

(b) Use differentials to find an approximate value for Hint:

Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
(a)
(b)
(c)

Return to Sample Exam