Difference between revisions of "009A Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 18: Line 18:
 
::For functions  <math style="vertical-align: -5px">f(x)</math>&thinsp; and <math style="vertical-align: -5px">g(x),</math>&nbsp; <math style="vertical-align: -12px">~\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x).</math>
 
::For functions  <math style="vertical-align: -5px">f(x)</math>&thinsp; and <math style="vertical-align: -5px">g(x),</math>&nbsp; <math style="vertical-align: -12px">~\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x).</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 46: Line 47:
 
|Thus, the equation of the tangent line is&thinsp; <math style="vertical-align: -5px">y=2(x-1)+2.</math>
 
|Thus, the equation of the tangent line is&thinsp; <math style="vertical-align: -5px">y=2(x-1)+2.</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 18:47, 18 February 2017

If

compute    and find the equation for the tangent line at . You may leave your answers in point-slope form.

Foundations:  
1. What two pieces of information do you need to write the equation of a line?
You need the slope of the line and a point on the line.
2. What does the Chain Rule state?
For functions   and  


Solution:

Step 1:  
First, we compute  We get
Step 2:  
To find the equation of the tangent line, we first find the slope of the line.
Using   in the formula for    from Step 1, we get
To get a point on the line, we plug in   into the equation given.
So, we have 
Thus, the equation of the tangent line is 


Final Answer:  

Return to Sample Exam