Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
::then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
::then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 102: Line 103:
 
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math>
 
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 18:46, 18 February 2017

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

(a)

(b)

(c)

Foundations:  
Recall:
L'Hôpital's Rule
Suppose that   and   are both zero or both
If   is finite or 
then


Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have
So, we can cancel   in the numerator and denominator. Thus, we have
Step 2:  
Now, we can just plug in   to get

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have
Step 2:  
This limit is 

(c)

Step 1:  
We have
Since we are looking at the limit as goes to negative infinity, we have
So, we have
Step 2:  
We simplify to get
So, we have


Final Answer:  
(a)
(b)
(c)

Return to Sample Exam