Difference between revisions of "009A Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Let   
 
<span class="exam">Let   
  
::::::<math>y=x^3.</math>
+
::<math>y=x^3.</math>
  
<span class="exam">a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -4px">y=x^3</math> at <math style="vertical-align: 0px">x=2</math>.
+
<span class="exam">(a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -4px">y=x^3</math> at <math style="vertical-align: 0px">x=2</math>.
  
<span class="exam">b) Use differentials to find an approximate value for <math style="vertical-align: -2px">1.9^3</math>.
+
<span class="exam">(b) Use differentials to find an approximate value for <math style="vertical-align: -2px">1.9^3</math>.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 18:44, 18 February 2017

Let

(a) Find the differential of at .

(b) Use differentials to find an approximate value for .

Foundations:  
What is the differential of at
Since    the differential is  

Solution:


(a)

Step 1:  
First, we find the differential
Since   we have
Step 2:  
Now, we plug   into the differential from Step 1.
So, we get

(b)

Step 1:  
First, we find . We have  
Then, we plug this into the differential from part (a).
So, we have
Step 2:  
Now, we add the value for to    to get an
approximate value of
Hence, we have
Final Answer:  
(a)
(b)

Return to Sample Exam