Difference between revisions of "009C Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
<span class="exam">Evaluate: | <span class="exam">Evaluate: | ||
| − | + | <span class="exam">(a) <math>\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}</math> | |
| − | + | ||
| + | <span class="exam">(b) <math>\sum_{n=1}^\infty \frac{1}{2} \bigg(\frac{1}{4}\bigg)^{n-1} </math> | ||
Revision as of 17:18, 18 February 2017
Evaluate:
(a)
(b)
| Foundations: |
|---|
| 1. L'Hôpital's Rule |
|
Suppose that and are both zero or both |
|
If is finite or |
|
then |
| 2. The sum of a convergent geometric series is |
| where is the ratio of the geometric series |
| and is the first term of the series. |
Solution:
(a)
| Step 1: |
|---|
| Let
|
| We then take the natural log of both sides to get |
| Step 2: |
|---|
| We can interchange limits and continuous functions. |
| Therefore, we have |
|
|
| Now, this limit has the form |
| Hence, we can use L'Hopital's Rule to calculate this limit. |
| Step 3: |
|---|
| Now, we have |
|
|
| Step 4: |
|---|
| Since we know |
| Now, we have |
|
|
(b)
| Step 1: |
|---|
| First, we not that this is a geometric series with |
| Since |
| this series converges. |
| Step 2: |
|---|
| Now, we need to find the sum of this series. |
| The first term of the series is |
| Hence, the sum of the series is |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |