Difference between revisions of "009C Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
<span class="exam"> Be sure to justify your answers!
 
<span class="exam"> Be sure to justify your answers!
  
::::::<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math>
+
::<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math>
  
  

Revision as of 17:17, 18 February 2017

Determine whether the following series converges absolutely,

conditionally or whether it diverges.

Be sure to justify your answers!


Foundations:  
1. A series is absolutely convergent if
        the series converges.
2. A series is conditionally convergent if
        the series diverges and the series converges.


Solution:

Step 1:  
First, we take the absolute value of the terms in the original series.
Let
Therefore,
       
Step 2:  
This series is the harmonic series (or -series with ).
Thus, it diverges. Hence, the series
       
is not absolutely convergent.
Step 3:  
Now, we need to look back at the original series to see
if it conditionally converges.
For
       
we notice that this series is alternating.
Let
The sequence is decreasing since
       
for all
Also,
       
Therefore, the series   converges
by the Alternating Series Test.
Step 4:  
Since the series   is not absolutely convergent but convergent,
this series is conditionally convergent.


Final Answer:  
        Conditionally convergent

Return to Sample Exam