Difference between revisions of "009B Sample Midterm 1"

From Grad Wiki
Jump to navigation Jump to search
Line 37: Line 37:
 
<span class="exam"> Let <math style="vertical-align: -5px">f(x)=1-x^2</math>.
 
<span class="exam"> Let <math style="vertical-align: -5px">f(x)=1-x^2</math>.
  
::<span class="exam">a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
+
<span class="exam">(a) Compute the left-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
::<span class="exam">b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
+
 
::<span class="exam">c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
+
<span class="exam">(b) Compute the right-hand Riemann sum approximation of <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> with <math style="vertical-align: 0px">n=3</math> boxes.
 +
 
 +
<span class="exam">(c) Express <math style="vertical-align: -14px">\int_0^3 f(x)~dx</math> as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.

Revision as of 17:10, 18 February 2017

This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Evaluate the indefinite and definite integrals.

(a)  

(b)  

 Problem 2 

Otis Taylor plots the price per share of a stock that he owns as a function of time

and finds that it can be approximated by the function

where is the time (in years) since the stock was purchased.

Find the average price of the stock over the first five years.

 Problem 3 

Evaluate the indefinite and definite integrals.

(a)  

(b)  

 Problem 4 

Evaluate the integral:

 Problem 5 

Let .

(a) Compute the left-hand Riemann sum approximation of with boxes.

(b) Compute the right-hand Riemann sum approximation of with boxes.

(c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.