Difference between revisions of "009A Sample Midterm 1, Problem 1"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)  | 
				Kayla Murray (talk | contribs)   | 
				||
| Line 11: | Line 11: | ||
!Foundations:      | !Foundations:      | ||
|-  | |-  | ||
| − | | '''1.''' If <math>\lim_{x\rightarrow a} g(x)\neq 0</math>  | + | | '''1.''' If <math style="vertical-align: -12px">\lim_{x\rightarrow a} g(x)\neq 0,</math> we have  | 
|-  | |-  | ||
|        <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>  | |        <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>  | ||
|-  | |-  | ||
| − | | '''2.''' <math>\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>  | + | | '''2.''' <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>  | 
|}  | |}  | ||
| Line 25: | Line 25: | ||
!Step 1:      | !Step 1:      | ||
|-  | |-  | ||
| − | |Since <math>\lim_{x\rightarrow 2} x =2\ne 0,</math>  | + | |Since <math style="vertical-align: -12px">\lim_{x\rightarrow 2} x =2\ne 0,</math>  | 
|-  | |-  | ||
|we have  | |we have  | ||
| Line 57: | Line 57: | ||
!Step 3:    | !Step 3:    | ||
|-  | |-  | ||
| − | |Solving for <math>\lim_{x\rightarrow 2} g(x)</math> in the last equation,  | + | |Solving for <math style="vertical-align: -12px">\lim_{x\rightarrow 2} g(x)</math> in the last equation,  | 
|-  | |-  | ||
|we get  | |we get  | ||
| Line 92: | Line 92: | ||
!Step 1:      | !Step 1:      | ||
|-  | |-  | ||
| − | |When we plug in <math>-3</math> into <math>\frac{x}{x^2-9},</math>  | + | |When we plug in <math style="vertical-align: 0px">-3</math> into   <math style="vertical-align: -12px">\frac{x}{x^2-9},</math>  | 
|-  | |-  | ||
| − | |we get <math>\frac{-3}{0}.</math>    | + | |we get   <math style="vertical-align: -12px">\frac{-3}{0}.</math>    | 
|-  | |-  | ||
|Thus,    | |Thus,    | ||
| Line 100: | Line 100: | ||
|        <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}</math>    | |        <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}</math>    | ||
|-  | |-  | ||
| − | |is either equal to <math>+\infty</math> or <math>-\infty.</math>  | + | |is either equal to <math style="vertical-align: -1px">+\infty</math> or <math style="vertical-align: -1px">-\infty.</math>  | 
|}  | |}  | ||
| Line 110: | Line 110: | ||
|        <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}=\lim_{x\rightarrow -3^+} \frac{x}{(x-3)(x+3)}.</math>  | |        <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}=\lim_{x\rightarrow -3^+} \frac{x}{(x-3)(x+3)}.</math>  | ||
|-  | |-  | ||
| − | |We are taking a right hand limit. So, we are looking at values of <math>x</math>    | + | |We are taking a right hand limit. So, we are looking at values of <math style="vertical-align: 0px">x</math>    | 
|-  | |-  | ||
| − | |a little bigger than <math>-3.</math> (You can imagine values like <math>x=-2.9.</math>)  | + | |a little bigger than <math style="vertical-align: 0px">-3.</math> (You can imagine values like <math style="vertical-align: 0px">x=-2.9.</math>)  | 
|-  | |-  | ||
|For these values, the numerator will be negative.     | |For these values, the numerator will be negative.     | ||
|-  | |-  | ||
| − | |Also, for these values, <math>x-3</math> will be negative and <math>x+3</math> will be positive.    | + | |Also, for these values, <math style="vertical-align: 0px">x-3</math> will be negative and <math style="vertical-align: -1px">x+3</math> will be positive.    | 
|-  | |-  | ||
|Therefore, the denominator will be negative.    | |Therefore, the denominator will be negative.    | ||
Revision as of 15:35, 18 February 2017
Find the following limits:
(a) Find provided that
(b) Find
(c) Evaluate
| Foundations: | 
|---|
| 1. If we have | 
| 2. | 
Solution:
(a)
| Step 1: | 
|---|
| Since | 
| we have | 
| Step 2: | 
|---|
| If we multiply both sides of the last equation by we get | 
| Now, using linearity properties of limits, we have | 
| Step 3: | 
|---|
| Solving for in the last equation, | 
| we get | 
| 
 
  | 
(b)
| Step 1: | 
|---|
| First, we write | 
| Step 2: | 
|---|
| Now, we have | 
(c)
| Step 1: | 
|---|
| When we plug in into | 
| we get | 
| Thus, | 
| is either equal to or | 
| Step 2: | 
|---|
| To figure out which one, we factor the denominator to get | 
| We are taking a right hand limit. So, we are looking at values of | 
| a little bigger than (You can imagine values like ) | 
| For these values, the numerator will be negative. | 
| Also, for these values, will be negative and will be positive. | 
| Therefore, the denominator will be negative. | 
| Since both the numerator and denominator will be negative (have the same sign), | 
| Final Answer: | 
|---|
| (a) | 
| (b) | 
| (c) |