Difference between revisions of "009A Sample Midterm 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Evaluate the following limits.
 
<span class="exam">Evaluate the following limits.
  
<span class="exam">(a) Find <math>\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}</math>
+
<span class="exam">(a) Find <math style="vertical-align: -14px">\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}</math>
  
<span class="exam">(b) Find <math>\lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} </math>
+
<span class="exam">(b) Find <math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} </math>
  
<span class="exam">(c) Evaluate <math>\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
+
<span class="exam">(c) Evaluate <math style="vertical-align: -20px">\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
  
  

Revision as of 16:00, 18 February 2017

Evaluate the following limits.

(a) Find

(b) Find

(c) Evaluate


Foundations:  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in into
       
we get
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       

(c)

Step 1:  
We begin by looking at the graph of
which is displayed below.
(Insert graph)
Step 2:  
We are taking a left hand limit. So, we approach from the left.
If we look at the graph from the left of and go towards
we see that goes to
Therefore,
       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam