Difference between revisions of "009A Sample Midterm 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
<span class="exam"> Find the derivatives of the following functions. Do not simplify.
 
<span class="exam"> Find the derivatives of the following functions. Do not simplify.
  
<span class="exam">(a)&nbsp; <math>f(x)=\sin\bigg(\frac{x^{-3}}{e^{-x}}\bigg)</math>
+
<span class="exam">(a)&nbsp; <math style="vertical-align: -16px">f(x)=\sin\bigg(\frac{x^{-3}}{e^{-x}}\bigg)</math>
  
<span class="exam">b)&nbsp; <math>g(x)=\sqrt{\frac{x^2+2}{x^2+4}}</math>
+
<span class="exam">(b)&nbsp; <math style="vertical-align: -18px">g(x)=\sqrt{\frac{x^2+2}{x^2+4}}</math>
  
<span class="exam">c)&nbsp; <math>h(x)=(x+\cos^2x)^8</math>
+
<span class="exam">(c)&nbsp; <math style="vertical-align: -6px">h(x)=(x+\cos^2x)^8</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Latest revision as of 15:57, 18 February 2017

Find the derivatives of the following functions. Do not simplify.

(a) 

(b) 

(c) 

Foundations:  
1. Chain Rule
       
2. Quotient Rule
       


Solution:

(a)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Quotient Rule and Chain Rule, we have

       

(b)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Quotient Rule, we have

       

(c)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Chain Rule again we get

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam