Difference between revisions of "009A Sample Midterm 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Find the derivatives of the following functions. Do not simplify.
+
<span class="exam"> Find the derivatives of the following functions. Do not simplify.
  
::<span class="exam">a)<math>f(x)=\sin\bigg(\frac{x^{-3}}{e^{-x}}\bigg)</math>
+
<span class="exam">(a)&nbsp; <math style="vertical-align: -16px">f(x)=\sin\bigg(\frac{x^{-3}}{e^{-x}}\bigg)</math>
::<span class="exam">b)<math>g(x)=\sqrt{\frac{x^2+2}{x^2+4}}</math>
 
::<span class="exam">c)<math>h(x)=(x+\cos^2x)^8</math>
 
  
 +
<span class="exam">(b)&nbsp; <math style="vertical-align: -18px">g(x)=\sqrt{\frac{x^2+2}{x^2+4}}</math>
 +
 +
<span class="exam">(c)&nbsp; <math style="vertical-align: -6px">h(x)=(x+\cos^2x)^8</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|'''1.''' Chain Rule
+
|'''1.''' '''Chain Rule'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
 +
|-
 +
|'''2.''' '''Quotient Rule'''
 
|-
 
|-
|'''2.''' Quotient Rule
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math>
 
|}
 
|}
  
Line 21: Line 26:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, using the Chain Rule, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>f'(x)=\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{x^{-3}}{e^{-x}}\bigg)'.</math>
 
|}
 
|}
  
Line 29: Line 34:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, using the Quotient Rule and Chain Rule, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{x^{-3}}{e^{-x}}\bigg)'}\\
 +
&&\\
 +
& = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(x^{-3})'-x^{-3}(e^{-x})'}{(e^{-x})^2}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-x)'}{(e^{-x})^2}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg).}
 +
\end{array}</math>
 
|}
 
|}
  
Line 38: Line 52:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, using the Chain Rule, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>g'(x)=\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{x^2+2}{x^2+4}\bigg)'.</math>
 
|}
 
|}
  
Line 50: Line 60:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, using the Quotient Rule, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{x^2+2}{x^2+4}\bigg)'}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(x^2+2)'-(x^2+2)(x^2+4)'}{(x^2+4)^2}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg).}
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 63: Line 80:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, using the Chain Rule, we have
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>h'(x)=8(x+\cos^2(x))^7(x+\cos^2(x))'.</math>
|-
 
|
 
 
|}
 
|}
  
Line 75: Line 88:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, using the Chain Rule again we get
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{h'(x)} & = & \displaystyle{8(x+\cos^2(x))^7(x+\cos^2(x))'}\\
 +
&&\\
 +
& = & \displaystyle{8(x+\cos^2(x))^7(1+2\cos(x)(\cos(x))')}\\
 +
&&\\
 +
& = & \displaystyle{8(x+\cos^2(x))^7(1-2\cos(x)\sin(x)).}
 +
\end{array}</math>
 
|}
 
|}
  
Line 88: Line 104:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg)</math>
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg)</math>
 
|-
 
|-
|'''(c)'''  
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>8(x+\cos^2(x))^7(1-2\cos(x)\sin(x))</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:57, 18 February 2017

Find the derivatives of the following functions. Do not simplify.

(a) 

(b) 

(c) 

Foundations:  
1. Chain Rule
       
2. Quotient Rule
       


Solution:

(a)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Quotient Rule and Chain Rule, we have

       

(b)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Quotient Rule, we have

       

(c)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Chain Rule again we get

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam