Difference between revisions of "009A Sample Midterm 3, Problem 6"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
| − | <span class="exam">Find the derivatives of the following functions. Do not simplify. | + | <span class="exam"> Find the derivatives of the following functions. Do not simplify. |
| − | + | <span class="exam">(a) <math>f(x)=\sin\bigg(\frac{x^{-3}}{e^{-x}}\bigg)</math> | |
| − | |||
| − | |||
| + | <span class="exam">b) <math>g(x)=\sqrt{\frac{x^2+2}{x^2+4}}</math> | ||
| + | |||
| + | <span class="exam">c) <math>h(x)=(x+\cos^2x)^8</math> | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 13:45, 18 February 2017
Find the derivatives of the following functions. Do not simplify.
(a)
b)
c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=(x+\cos^2x)^8}
| Foundations: |
|---|
| 1. Chain Rule |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)} |
| 2. Quotient Rule |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}} |
Solution:
(a)
| Step 1: |
|---|
| First, using the Chain Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{x^{-3}}{e^{-x}}\bigg)'.} |
| Step 2: |
|---|
| Now, using the Quotient Rule and Chain Rule, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{x^{-3}}{e^{-x}}\bigg)'}\\ &&\\ & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(x^{-3})'-x^{-3}(e^{-x})'}{(e^{-x})^2}\bigg)}\\ &&\\ & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-x)'}{(e^{-x})^2}\bigg)}\\ &&\\ & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg).} \end{array}} |
(b)
| Step 1: |
|---|
| First, using the Chain Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{x^2+2}{x^2+4}\bigg)'.} |
| Step 2: |
|---|
| Now, using the Quotient Rule, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{x^2+2}{x^2+4}\bigg)'}\\ &&\\ & = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(x^2+2)'-(x^2+2)(x^2+4)'}{(x^2+4)^2}\bigg)}\\ &&\\ & = & \displaystyle{\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg).} \end{array}} |
(c)
| Step 1: |
|---|
| First, using the Chain Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=8(x+\cos^2(x))^7(x+\cos^2(x))'.} |
| Step 2: |
|---|
| Now, using the Chain Rule again we get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{h'(x)} & = & \displaystyle{8(x+\cos^2(x))^7(x+\cos^2(x))'}\\ &&\\ & = & \displaystyle{8(x+\cos^2(x))^7(1+2\cos(x)(\cos(x))')}\\ &&\\ & = & \displaystyle{8(x+\cos^2(x))^7(1-2\cos(x)\sin(x)).} \end{array}} |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg)} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg)} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8(x+\cos^2(x))^7(1-2\cos(x)\sin(x))} |