Difference between revisions of "009A Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' Chain Rule
+
|'''1.''' '''Chain Rule'''
 
|-
 
|-
|'''2.''' Derivatives of trig/ln
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
 
|-
 
|-
|'''3.''' Quotient Rule
+
|'''2.''' '''Trig Derivatives'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\cos x)=-\sin x</math>
 +
|-
 +
|'''3.''' '''Quotient Rule'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math>
 +
|-
 +
|'''4.''' '''Derivative of natural logarithm
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{d}{dx}(\ln x)=\frac{1}{x}</math>
 
|}
 
|}
  

Revision as of 11:43, 18 February 2017

Find the derivatives of the following functions. Do not simplify.

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\tan^3(7x^2+5) }
b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\sin(\cos(e^x)) }
c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{(5x^2+7x)^3}{\ln(x^2+1)} }


Foundations:  
1. Chain Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)}
2. Trig Derivatives
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\cos x)=-\sin x}
3. Quotient Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}}
4. Derivative of natural logarithm
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(\ln x)=\frac{1}{x}}


Solution:

(a)

Step 1:  
First, we use the Chain Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3\tan^2(7x^2+5)(\tan(7x^2+5))'.}
Step 2:  
Now, we use the Chain Rule again to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{3\tan^2(7x^2+5)(\tan(7x^2+5))'}\\ &&\\ & = & \displaystyle{3\tan^2(7x^2+5)\sec^2(7x^2+5)(7x^2+5)'}\\ &&\\ & = & \displaystyle{3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x).} \end{array}}

(b)

Step 1:  
First, we use the Chain Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=\cos(\cos(e^x))(\cos(e^x))'.}
Step 2:  
Now, we use the Chain Rule again to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{\cos(\cos(e^x))(\cos(e^x))'}\\ &&\\ & = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x)'}\\ &&\\ & = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x).} \end{array}}

(c)

Step 1:  
First, we use the Quotient Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}.}
Step 2:  
Now, we use the Chain Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{h'(x)} & = & \displaystyle{\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}}\\ &&\\ & = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(5x^2+7x)'-(5x^2+7x)^2\frac{1}{x^2+1}(x^2+1)'}{(\ln(x^2+1))^2}}\\ &&\\ & = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}.} \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(\cos(e^x))(-\sin(e^x))(e^x)}
    (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}}

Return to Sample Exam