Difference between revisions of "009B Sample Final 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the region bounded by the following two functions: ::::::::<span class="exam"> <math style="vertical-align: -5px">y=2(-x^2+9)</math> and <math styl...")
 
Line 1: Line 1:
<span class="exam">Consider the region bounded by the following two functions:
+
<span class="exam">Divide the interval <math>[-1,1]</math> into four subintervals of equal length <math>\frac{1}{2}</math> and compute the left-endpoint Riemann sum of <math>y=1-x^2.</math>
::::::::<span class="exam"> <math style="vertical-align: -5px">y=2(-x^2+9)</math> and <math style="vertical-align: -4px">y=0</math>.
 
 
 
<span class="exam">a) Using the lower sum with three rectangles having equal width, approximate the area.
 
 
 
<span class="exam">b) Using the upper sum with three rectangles having equal width, approximate the area.  
 
 
 
<span class="exam">c) Find the actual area of the region.
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 10:46, 18 February 2017

Divide the interval into four subintervals of equal length and compute the left-endpoint Riemann sum of

Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam