Difference between revisions of "009B Sample Final 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the region bounded by the following two functions: ::::::::<span class="exam"> <math style="vertical-align: -5px">y=2(-x^2+9)</math> and <math styl...")
 
Line 1: Line 1:
<span class="exam">Consider the region bounded by the following two functions:
+
::<span class="exam">a) Find the area of the surface obtained by rotating the arc of the curve
::::::::<span class="exam"> <math style="vertical-align: -5px">y=2(-x^2+9)</math> and <math style="vertical-align: -4px">y=0</math>.
 
  
<span class="exam">a) Using the lower sum with three rectangles having equal width, approximate the area.
+
::::<math>y^3=x</math>
  
<span class="exam">b) Using the upper sum with three rectangles having equal width, approximate the area.  
+
::<span class="exam">between <math>(0,0)</math> and <math>(1,1)</math> about the <math>y</math>-axis.
  
<span class="exam">c) Find the actual area of the region.
+
::<span class="exam">b) Find the length of the arc
 +
 
 +
::::<math>y=1+9x^{\frac{3}{2}}</math>
 +
 
 +
::<span class="exam">between the points <math>(1,10)</math> and <math>(4,73).</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 20:19, 17 February 2017

a) Find the area of the surface obtained by rotating the arc of the curve
between and about the -axis.
b) Find the length of the arc
between the points and
Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam