Difference between revisions of "009B Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the region bounded by the following two functions: ::::::::<span class="exam"> <math style="vertical-align: -5px">y=2(-x^2+9)</math> and <math styl...")
 
Line 1: Line 1:
<span class="exam">Consider the region bounded by the following two functions:
+
::<span class="exam">a) State '''both parts''' of the Fundamental Theorem of Calculus.
::::::::<span class="exam"> <math style="vertical-align: -5px">y=2(-x^2+9)</math> and <math style="vertical-align: -4px">y=0</math>.
 
  
<span class="exam">a) Using the lower sum with three rectangles having equal width, approximate the area.
+
::<span class="exam">b) Evaluate the integral
  
<span class="exam">b) Using the upper sum with three rectangles having equal width, approximate the area.
+
::::<math>\int_0^1 \frac{d}{dx} \bigg(e^{\tan^{-1}(x)}\bigg)dx</math>
  
<span class="exam">c) Find the actual area of the region.
+
::<span class="exam">c) Compute
 +
 
 +
::::<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 20:07, 17 February 2017

a) State both parts of the Fundamental Theorem of Calculus.
b) Evaluate the integral
c) Compute
Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam