Difference between revisions of "009A Sample Final 3, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Compute ::<span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}</math> ::<span class="exam">b) <math st...")
 
Line 1: Line 1:
<span class="exam">Compute
+
<span class="exam">Let <math>y=\tan(x).</math>
  
::<span class="exam">a) <math style="vertical-align: -14px">\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}</math>
+
::<span class="exam">a) Find the differential <math>dy</math> of <math>y=\tan (x)</math> at <math>x=\frac{\pi}{4}.</math>  
  
::<span class="exam">b) <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin^2x}{3x}</math>
+
::<span class="exam">b) Use differentials to find an approximate value for <math>\tan(0.885).</math> Hint: <math>\frac{\pi}{4}\approx 0.785.</math>
 
 
::<span class="exam">c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 19:36, 17 February 2017

Let

a) Find the differential of at
b) Use differentials to find an approximate value for Hint:
Foundations:  

Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)
(c)

Return to Sample Exam