Difference between revisions of "009A Sample Midterm 3, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 21: | Line 21: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, using the Chain Rule, we have |
|- | |- | ||
− | | | + | | <math>f'(x)=\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{x^{-3}}{e^{-x}}\bigg)'.</math> |
|} | |} | ||
Line 29: | Line 29: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, using the Quotient Rule and Chain Rule, we have |
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{f'(x)} & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{x^{-3}}{e^{-x}}\bigg)'}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(x^{-3})'-x^{-3}(e^{-x})'}{(e^{-x})^2}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-x)'}{(e^{-x})^2}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg).} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 90: | Line 99: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math>\cos\bigg(\frac{x^{-3}}{e^{-x}}\bigg)\bigg(\frac{e^{-x}(-3x^{-4})-x^{-3}(e^{-x})(-1)}{(e^{-x})^2}\bigg)</math> |
|- | |- | ||
| '''(b)''' <math>\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg)</math> | | '''(b)''' <math>\frac{1}{2}\bigg(\frac{x^2+2}{x^2+4}\bigg)^{-\frac{1}{2}}\bigg(\frac{(x^2+4)(2x)-(x^2+2)(2x)}{(x^2+4)^2}\bigg)</math> |
Revision as of 17:11, 17 February 2017
Find the derivatives of the following functions. Do not simplify.
- a)
- b)
- c)
Foundations: |
---|
1. Chain Rule |
2. Quotient Rule |
Solution:
(a)
Step 1: |
---|
First, using the Chain Rule, we have |
Step 2: |
---|
Now, using the Quotient Rule and Chain Rule, we have |
|
(b)
Step 1: |
---|
First, using the Chain Rule, we have |
Step 2: |
---|
Now, using the Quotient Rule, we have |
|
(c)
Step 1: |
---|
First, using the Chain Rule, we have |
Step 2: |
---|
Now, using the Chain Rule again we get |
|
Final Answer: |
---|
(a) |
(b) |
(c) |