Difference between revisions of "009A Sample Midterm 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 63: Line 63:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, using the Chain Rule, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>h'(x)=8(x+\cos^2(x))^7(x+\cos^2(x))'.</math>
 
|}
 
|}
  
Line 75: Line 71:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, using the Chain Rule again we get
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{h'(x)} & = & \displaystyle{8(x+\cos^2(x))^7(x+\cos^2(x))'}\\
 +
&&\\
 +
& = & \displaystyle{8(x+\cos^2(x))^7(1+2\cos(x)(\cos(x))')}\\
 +
&&\\
 +
& = & \displaystyle{8(x+\cos^2(x))^7(1-2\cos(x)\sin(x)).}
 +
\end{array}</math>
 
|}
 
|}
  
Line 92: Line 91:
 
|'''(b)'''
 
|'''(b)'''
 
|-
 
|-
|'''(c)'''  
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>8(x+\cos^2(x))^7(1-2\cos(x)\sin(x))</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:51, 17 February 2017

Find the derivatives of the following functions. Do not simplify.

a)
b)
c)


Foundations:  
1. Chain Rule
2. Quotient Rule


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
First, using the Chain Rule, we have
       
Step 2:  
Now, using the Chain Rule again we get

       


Final Answer:  
(a)
(b)
    (c)    

Return to Sample Exam