Difference between revisions of "009A Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 24: Line 24:
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2(x+h)+5}-3\sqrt{-2x+5}}{h}}\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2(x+h)+5}-3\sqrt{-2x+5}}{h}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2x+-2h+5}-3\sqrt{-2x+5}}{h}.}
+
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2x+-2h+5}-3\sqrt{-2x+5}}{h}}\\
 +
&&\\
 +
& = & \displaystyle{3\lim_{h\rightarrow 0} \frac{\sqrt{-2x+-2h+5}-\sqrt{-2x+5}}{h}.}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
Line 33: Line 35:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we multiply the numerator and denominator by the conjugate of the numerator.
 +
|-
 +
|Hence, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{(\sqrt{-2x+-2h+5}-\sqrt{-2x+5})}{h} \frac{(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}{(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\
 +
&&\\
 +
& = & \displaystyle{3\lim_{h\rightarrow 0} \frac{(-2x+-2h+5)-(-2x+5)}{h(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\
 +
&&\\
 +
& = & \displaystyle{3\lim_{h\rightarrow 0} \frac{-2h}{h(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\
 +
&&\\
 +
& = & \displaystyle{3\lim_{h\rightarrow 0} \frac{-2}{\sqrt{-2x+-2h+5}+\sqrt{-2x+5}}}\\
 +
&&\\
 +
& = & \displaystyle{3\frac{-2}{\sqrt{-2x+5}+\sqrt{-2x+5}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-3}{\sqrt{-2x+5}}.}
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 42: Line 60:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{-3}{\sqrt{-2x+5}}</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:50, 17 February 2017

Use the definition of the derivative to compute for


Foundations:  
Limit Definition of Derivative


Solution:

Step 1:  
Let
Using the limit definition of the derivative, we have

       

Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       


Final Answer:  
       

Return to Sample Exam