Difference between revisions of "009A Sample Midterm 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 13: | Line 13: | ||
|- | |- | ||
| | | | ||
− | |||
|- | |- | ||
| | | | ||
− | |||
|} | |} | ||
Line 26: | Line 24: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Let <math>v(t)</math> be the velocity of the object at time <math>t.</math> |
+ | |- | ||
+ | |Then, we have | ||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{v(3)} & = & \displaystyle{\lim_{t\rightarrow 3} \frac{s(t)-s(3)}{t-3}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+200-(-4.9(9)+200)}{t-3}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+44.1}{t-3}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 34: | Line 40: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we factor the numerator to get |
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{v(3)} & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+44.1}{t-3}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9(t^2-9)}{t-3}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9(t-3)(t+3)}{(t-3)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{t\rightarrow 3} -4.9(t+3)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{6(-4.9) \text{ meters/second}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 68: | Line 85: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math>6(-4.9) \text{ meters/second}</math> |
|- | |- | ||
|'''(b)''' | |'''(b)''' | ||
|} | |} | ||
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 15:10, 17 February 2017
The position function gives the height (in meters) of an object that has fallen from a height of 200 meters. The velocity at time seconds is given by:
- a) Find the velocity of the object when
- b) At what velocity will the object impact the ground?
Foundations: |
---|
Solution:
(a)
Step 1: |
---|
Let be the velocity of the object at time |
Then, we have |
Step 2: |
---|
Now, we factor the numerator to get |
|
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |