Difference between revisions of "009A Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
|-
 
|-
 
|
 
|
::
 
 
|-
 
|-
 
|
 
|
::
 
 
|}
 
|}
  
Line 26: Line 24:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Let <math>v(t)</math> be the velocity of the object at time <math>t.</math>
 +
|-
 +
|Then, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{v(3)} & = & \displaystyle{\lim_{t\rightarrow 3} \frac{s(t)-s(3)}{t-3}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+200-(-4.9(9)+200)}{t-3}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+44.1}{t-3}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 34: Line 40:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we factor the numerator to get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{v(3)} & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+44.1}{t-3}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9(t^2-9)}{t-3}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9(t-3)(t+3)}{(t-3)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{t\rightarrow 3} -4.9(t+3)}\\
 +
&&\\
 +
& = & \displaystyle{6(-4.9) \text{ meters/second}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 68: Line 85:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>6(-4.9) \text{ meters/second}</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  
 
|}
 
|}
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:10, 17 February 2017

The position function gives the height (in meters) of an object that has fallen from a height of 200 meters. The velocity at time seconds is given by:


a) Find the velocity of the object when
b) At what velocity will the object impact the ground?


Foundations:  


Solution:

(a)

Step 1:  
Let be the velocity of the object at time
Then, we have
       
Step 2:  
Now, we factor the numerator to get

       

(b)

Step 1:  
Step 2:  


Final Answer:  
    (a)    
(b)

Return to Sample Exam